

AIR POLLUTION IN KARAGANDA REGION AS SEEN FROM SPACE

FUNDAMENTAL ANALYSIS, FOCUS ON KARAGANDA REGION, AND NOTES ON KAZAKHSTAN'S BROADER IMPACT ON CLIMATE CHANGE

TRANSITIONFunded byMinistry of Foreign Affairs of the Czech Republicthe European Union

O1 Introduction

02

Climate change & Air pollution

04 Results

05 Recommendation

S

03 Data & Methods

06 Executive Summary

INTRODUCTION

Karaganda Region:

- 4th largest in KZ
- approx. 239 000 km²
- 1.3 million people
- rich mineral resources (coal, Fe, Cu, Sn, Mo, Mn, Pb, W, Au, Ag, U, ...)
- Karaganda Coal Basin one of the largest in the world → Karaganda is referred to as the "Coal Capital"
- Metallurgy, mining, machinery
- → Kazakhstan as 21st leading polluter due to CO₂ (2019)
- → Kazakhstan as 23rd most polluted country (PM_{2.5} levels) (2021)

2 (2019) 1_{2.5} levels) (2021)

LAND COVER & ADMINISTRATIVE DIVISION OF KARAGANDA REGION

INTERPLAY OF CLIMATE CHANGE AND AIR POLLUTION IN KZ

Potential to curtail the country's footprint despite significant amount of emissions (CO₂)

Changing precipitation and escalating droughts -> heightened risk on agriculture, forestry and water resource management

2021 Environmental Code - improved accessibility of climate and environmental information (**Kazhydromet** - accountable for climate data)

Kazakhstan pledges

- Kyoto Protocol,
- Paris Agreement
- Carbon neutrality by 2060

Air pollution + Climate change in Kazakhstan?

Black snow in Temirtau

CLIMATE CHANGE & AIR POLLUTION

AIR POLLUTION CAUSES:

- pollutants
- physical geography
- unexpected impactful events (covid-19)

KEY POLLUTANTS

TT.

Particulate matter (PM₁₀)

- Mainly from combustion sources
- Classified by size
- Toxic and genotoxic
- Catalyst for chemical reactions and the toxicity is enhanced by other pollutants

AIR POLLUTION FROM MINING ACTIVITIES

Concentrated in several regions - Karaganda, East KZ, Pavlodar, Atyrau

- Type of air pollutants depend on extracted minerals and extracted methods:
 - NO₂ **coal mines** (Karaganda Coal Basin, Pavlodar)
 - CH₄ oils and gas (Aktobe, Atyrau. Mangistau, Karaganda, Kyzylorda, South KZ)
 - SO₂ copper mines and smelters (Balkhash)

Power generation and metallurgy sectors -responsible for 37 % and 30 % of the country's gross industrial emissions

AIR POLLUTION LIMITS IN KAZAKHSTAN

KZ - explicit guidelines for monitoring atmospheric air quality The state supervises pollutant concentration levels using stationary and mobile posts (Kazhydromet) Legally, all the collected data must be stored in the "National Data Bank on the State of the Environment and Natural **Resources of the Republic of Kazakhstan," with public access**

Other independent monitoring systems - not integrated into state monitoring independent data from satellites

	Environmental limits for air pollution (MAC)	Pollutant	One-Time MAC, µg m ⁻³		Average Daily MAC, μg m ⁻³		Average Annual MAC, µg m ⁻³	
			Kazakhstan	WHO	Kazakhstan	WHO	Kazakhstan	WHO
	→The permissible limit values of	TSP	500	-	150	-	-	-
	pollutants in Kazakhstan are	PM_{10}	300	-	60	50	-	20
	higher than the WHO	PM _{2.5}	160	-	35	25	-	10
		SO_2	500	-	50	20	-	-
	recommendations	NO ₂	200	-	40	-	-	40

INFLUENCE OF PHYSICAL-GEOGRAPHICAL CONDITIONS ON THE DISTRIBUTION OF AIR MASSES

Weather - extremely continental position o KZ + large temperature amplitude during the year

Significant **increase in solar radiation from North to South** - the largest amount of solar energy recieved from June to August.

Very variable wind regime throughout the year

Local winds in mountains and coastal areas

Mountains in the S ans SE influences the air currents globally → natural barrier to the cold air masses passage towards South

DATA & METHODS

Sentinel-5P

Copernicus Atmospere Monitoring Service (CAMS)

Processing

SENTINEL-5P

TROPOMI spectrometer

S5P measures gases such as NO₂, O₃, CH₂O, SO₂, CH₄, CO and aerosols

Daily measures with a spatial resolution of approx. 5.5 km x 3.5 km (~7 km to ~5.5 km until August 2019)

COPERNICUS ATMOSPHERE MONITORING SERVICE (CAMS)

CAMS provide global, quality-controlled information related to air pollution, solar energy, greenhouse gases and climate forcing.

CAMS global atmospheric composition forecasts used for measuring **PM10 and SO2**

Forecast + Analysis (combination of satellite data, ground-based observations, and numerical models) available at hourly time steps

PROCESSING

Data (5/2018 - 12/2022) downloaded and preprocessed using Python scripts and Sentinel Hub service.

Grid with a resolution 1x1 km

Pollutants' units:

- NO2 and CO in 10-4 mol/m2
- PM10 and SO2 in μ g/m3
- CH4 in parts per billion (ppb)

Daily values used to calculate various statistics → all-time/yearly/seasonal/monthly averages and medians

BASIC ANALYSIS

DISTRIBUTION OF MAJOR COAL, OIL AND GAS MINING SITES IN KAZAKHSTAN

\mathbf{NO}_2

- Highest concentration in residential areas and major industrial sites
- Karaganda many mining sites, center of coal mining
- **Temirtau** steel industry (ArcelorMittal Temirtau JSC)

\mathbf{NO}_2

- 8 underground coal mines (above 10 Mt annual output (2020))
- 5 coal-fired power
 plants (over 2100 Mw)
- ArcelorMittal Temirtau steel plant the biggest polluter withing the area

NO₂

Ø NO2 concentrations in the cities and districts of the Karaganda Region

- Temirtau
- Karaganda
- Saran (mining)
- Shakhtinsk (mining)

NO₂

Ø NO₂ concentrations in the cities and towns of the **Karaganda Region**

- Karaganda
- Temirtau
- Saran (mining)
- Shakhtinsk (mining)
- Abay

NO₂

• Yearly concentration increase in the surroundings of Pavlodar, Astana, Karaganda

• Partial concentration decrease in the populated areas in 2020 (covid-19)

NITROGEN DIOXIDE BASIC ANALYSIS YEARLY COMPARISON

(2018-2022)

 S5P data limit in valid detection of CH₄ over water bodies and in mountains (threshold of 80 observations)

METHANE (5/2018-12/2022) SENTINEL-5P DATA LIMIT

CH_4

- Higher concentrations in southern, northwestern parts of the region and around regional capital
- Lower CH₄ emissions from surface mines compared to underground mines

METHANE BASIC ANALYSIS

(5/2018-12/2022)

- Slightly elevated CH₄ concentrations above coal mines and in the vicinity of coalfired power plants
 - Karaganda
 Thermal Power
 Station (TPS) 3
 - Karaganda GRES-2 (near water body)

METHANE BASIC ANALYSIS

(5/2018-12/2022)

CH_4

Ø CH₄ concentrations in the cities and districts of the Karaganda Region

- Saran (mining)
- Karaganda

Temirtau, Priozersk

- small areas
- located near a large water body

METHANE BASIC ANALYSIS

Ø CH4 concentrations in the cities and towns of the Karaganda Region

 no pattern or distinctive relationship

METHANE BASIC ANALYSIS

(5/2018-12/2022)

- Yearly overall concentration increase throughout the whole country global trend
- The average annual growth = 9.2 ppb

(very close to the global average rate (9ppb/year))

METHANE BASIC ANALYSIS YEARLY COMPARISON

(2018-2022)

- Similar regional distribution as in the case of NO₂
 - Karaganda
 - Temirtau

SO2 pollution around Balkhash city

- Balkhash is a significant pollution hotspot Balkhashcvetmet
 Copper Smelter
- CAMS dataset
 limitation (absence
 of local
 measurements from
 Balkhash?)

SULFUR DIOXIDE BASIC ANALYSIS

(5/2018-12/2022)

Ø SO₂ concentrations in the cities and districts of the Karaganda Region

- Temirtau
- Saran (mining)
- Karaganda
- Shakhtinsk

SULFUR DIOXIDE **BASIC ANALYSIS**

Ø SO₂ concentrations in the cities and towns of the **Karaganda Region**

 cities and towns close to Karaganda and Temirtau

SULFUR DIOXIDE **BASIC ANALYSIS**

(5/2018 - 12/2022)

SO₂

Ø SO₂ concentrations in selected coal-fired power plants of KZ

(highlighted powerplants in Karaganda Region)

Karaganda TPS-3, **TPS-2**

SULFUR DIOXIDE BASIC ANALYSIS

sulfur dioxide [µg/m3]

SO₂

- Model calculation change
 - elevated values in 2018 and 2019 for Jezkazgan and NW of Astana)
- Prevailing concentration decrease in most cities between 2020 and 2022

SULFUR DIOXIDE BASIC ANALYSIS YEARLY COMPARISON

(2018-2022)

- Anthropogenic and natural sources
- Karaganda on the interface of N and S
 - elevated values in the S part of the region
 - anthropogenic influence in the N part
- Mining + metallurgy + coal power plant → higher PM₁₀
 concentrations around
 Karaganda and
 Temirtau

PARTICULATE MATTERBASIC ANALYSIS(5/2018-12/2022)

- Highest concentration in S and SE of KZ (bare soils, deserts)
- Significant part of KZ exceeds the WHO limits for annual PM10 (20 µg/m3, pink colour)
- Outside areas with naturally generated
 PM₁₀ - Karaganda,
 Oskemen, Aktobe,
 Astana, Kostanay

PARTICULATE MATTERBASIC ANALYSIS(5/2018-12/2022)

Ø PM₁₀ concentrations in the cities and districts of the **Karaganda Region**

- Balkhash (natural)
- Priozersk (natural)
- **Temirtau** (anthrop.)
- Saran (anthrop.)
- Karaganda

(anthrop.)

PARTICULATE MATTER (5/2018 - 12/2022)**BASIC ANALYSIS**

Ø PM₁₀ concentrations in the cities and towns of the **Karaganda Region**

 comparable for most cities

High concentration levels in the south of the region

- Balkhash (Balkhashcvetmet Copper Smelter)
- Priozersk (natural sources)

PARTICULATE MATTER (5/2018 - 12/2022)**BASIC ANALYSIS**

particulate matter 10 [µg/m3]

- PM₁₀ distribution
 varies each year
 (2020 probably
 dust storms)
- Consistently highest
 in Mangystau

PARTICULATE MATTER BASIC ANALYSIS YEARLY COMPARISON

(2018-2022)

RECOMMENDATIONS FOR KAZAKHSTAN

Kazakhstan introduced its Environmental Protection Code in 2021

Path towards carbon neutrality in 2060

Contribution to fulfilling UN Sustainable Development Goals and UNFCCC Paris Agreement

Large reserves of earth resources > mining, resource processing and heavy industries

Crucial interplay between the economic drivers and environmental commitments

RECOMMENDATIONS FOR KAZAKHSTAN

Strengthen air quality monitoring and data collection

Ramp down coal use and renewable energy deployment

Regulatory frameworks, environmental liability and local emission inventories

Energy efficiency and emission control measures for industries

Public awareness and participation

RECOMMENDATIONS FOR KARAGANDA REGION

Prioritize efforts towards coal-related industry

Mitigate dust emissions from mining operations

Prioritize efforts towards metallurgical industry

Improve monitoring effects

Public awareness and participation

PRIORITIZE EFFORTS TOWARDS COAL-RELATED INDUSTRY

Key focus on incentivizing coal power stations to adopt advanced pollution control technologies

Enforce strict emission standards

 encourage coal power stations to invest in stateof-the-art flue gas desulfurization systems, electrostatic precipitators, fabric filters

MITIGATE DUST EMISSIONS FROM MINING OPERATIONS

Including technologies improving dust suppression, utilizing enclosed conveyor systems

Regular **monitoring of dust levels**, conducting inspections

→ identify areas that require improvements

System in place to monitor the compliance of coals sold in the retail market

PRIORITIZE EFFORTS TOWARDS METALLURGICAL INDUSTRY

Especially steel mills, ferroalloy facilities, copper smelters

Encourage the adoption of cleaner production technologies

• electric arc furnaces

IMPROVE MONITORING EFFECTS

Enhancing the air quality monitoring network by strategically locating monitoring stations equipped with high-quality instruments → accurate, real-time data

Data use to assess the effectiveness of pollution reduction measures → Identify areas requiring further attention

PUBLIC AWARENESS AND PARTICIPATION

- Local government should involve citizens in decisions
 - spatial planning
 - approving local clean air plans
 - conducting EIAs
 - permitting industrial activities

Public engagement fosters transparency, mitigates opposition, allows oversight of fund use

Public awareness campaigns and educating about the importance of sustainable transportation options

• significant reliance on passenger car transport, (old models with low fuel efficiency)

• widespread use of highly polluting heating methods (coal, gas, biomass, heating oils) Early warning system to alert authorities and the public about emergency air pollution events

• \rightarrow taking timely preventive actions and minimizing the adverse effects

TRANSITION Ministry of Foreign Affairs of the Czech Republic

Funded by the European Union

АЗАМАТТАР ЖӘНЕ ЭКОЛОГИЯ https://ecocitizens.kz

