MERCURY in Fish from Industrial Sites in Thailand

Ing. Jana Tremlová, Ph.D. Supporting data: RNDr. Jindřich Petrlík, Akarapon Teebthaisong, Autthaporn Ritthichat

Bol ()iene

Prolysis

11173

Prague, Bangkok 2017

MERCURY in Fish from Industrial Sites in Thailand

rolysis

This report was prepared and published as a part of the project " Increasing Transparency in Industrial Pollution Management through Citizen Science " funded by the European Union (EU) and cofunded by the Global Greengrants Fund, International POPs Elimination Network (IPEN) as part of the work of its Toxic Metals working group and Ministry of Foreign Affairs of the Czech Republic within the Framework of the Transition Promotion Programme – a financial assistance programme supporting democracy and human rights using the Czech Republic's experience with social transition and democratization. Project was implemented by Arnika – Toxics and Waste Programme and Ecological Allert and Recovery Thailand (EARTH) based in Bangkok, Thailand. The content of this publication does not reflect the official opinion of the European Union, and in no way can be taken to reflect any official position and/or opinion of the Ministry of Foreign Affairs of the Czech Republic or the government of the Czech Republic. Responsibility for the information and views expressed in the publication lies entirely with the authors.

We would like also aknowledge financial support from the Government of Sweden which made possible part of the chemical analyses and preparation of the report through the grant to IPEN. We also thank to RNDr. Petr Blobolil from the Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, who determined age of the sampled fish.

Arnika – Toxics and Waste Programme, Dělnická 13, CZ-170 00, Prague 7, Czech Republic; tel. +420774406825; email: toxic@arnika.org; website: http://english.arnika.org

Ecological Alert and Recovery - Thailand (EARTH), 211/2 Ngamwongwan Rd., Soi 31 Bangkhen, Muang Nonthaburi 11000 Thailand; tel: +6629525061, Fax: +6629525062; website: http://www.earththailand.org/th/

Graphic design: Pavel Jaloševský

ISBN 978-80-87651-33-9

UROPEAN UNION

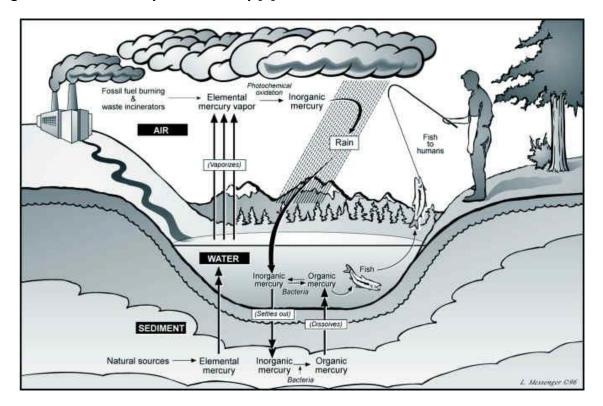
Content:

Introduction	2
Mercury contamination	3
Sampling sites	4
Hkao Hin Sorn	4
Khon Kaen	5
Loei	5
Map Ta Phut	6
Rayong IRPC industrial zone	6
Praeksa	6
Samut Sakhon	7
Tha Tum	7
Klong Dan	7
Chanthaburi	8
Thap Lan National Park and Klong Yang Canal	8
Sampling material	9
Sampling procedures and analytical methods	18
Results	19
Discussion	25
Legal standards and results of comparable studies	25
Evaluation of pollutant levels	31
Health risk management	36
Conclusions	37
Acknowledgement	38
References	39
Appendix 1	41
Appendix 2	48
Appendix 3	50
Appendix 4	52

Introduction

The main objective of this study is to interpret a data set obtained from an environmental sampling in different parts of Thailand that was carried out in February/March 2016 and February 2017. Samples originated from various sites which some of them served as control areas without any known sources of pollution and some samples originated from highly industrialized areas. Collected samples of fish and sediments were analyzed for content of mercury and methylmercury, secondary also for the content of some selected risk elements and data were further discussed and compared to national and international legal standards.

This sampling campaign is a part of "Increasing Transparency in Industrial Pollution Management through Citizen Science" project, and was conducted by a non-profit organization Arnika Association, Czech Republic and Ecological Alert and Recovery – Thailand (EARTH) Association.


Mercury contamination

Mercury is a well-known toxin that has damaging effects on human health affecting mostly nervous and other body systems including cardiovascular, respiratory, gastrointestinal, hematologic, immune and reproductive systems [1]. Its neurotoxicity is most damaging for developing organisms and therefore for pregnant women. Fetuses are the most sensitive group while exposed to mercury in the environment of the mother [2]. A unique first ever peer-reviewed study on the economic burdens of mercury exposure by Transande et al. [3] states that mercury contamination that causes also a significant IQ reduction costs 77.4 – 130 million dollars per year in lost income potential. In the case of Thailand these costs to the community were enumerated in 278,000 – 480,000 dollars a year and it was just for Tha Tum industrial area. A dependence of the earning losts on mercury can be summed up as follows: higher mercury contamination = lower IQ = lower economical potential = higher community costs [4].

Sources of mercury contamination in the environment can be either natural or anthropogenic. Natural sources of mercury include volcanoes, forest fires or leaching of mercury contain minerals and rocks. Anthropogenic sources are mainly connected with industrial activities and levels of mercury in the environment are increasing due to discharge from hydroelectric, mining, smelting, cement and alkali, pulp and paper industries. Incineration of municipal and medical waste and emissions from coal power plants and using of fossil fuels also contribute to high levels of mercury. A problem with mercury is that it is able to travel long distances in the air and therefore able to contaminate places remoted from an initial source of pollution. Airborne mercury is then deposited into water and becomes accessible for bacterias in lakes, streams and ocean sediments that convert elemental mercury into highly bioavailable organic compounds such as methylmercury. The conversion of inorganic mercury to methylmercury is important for two reasons i) it is much more toxic than inorganic mercury compounds, ii) organisms require a long time to eliminate it and therefore it leads to bioaccumulation.

Bioaccumulation of mercury is a process where methylmercury producing bacterias maybe consume by a next higher organism up the food chain or the bacterias may release the methylmercury into the water where it can be adsorbed to plankton which can also be consumed by the organisms of higher trophic level. This pattern continues as small fish/organisms get eaten by progressively bigger and bigger fish until the fish is finally consumed by human or other animal. It is called biomangification and it means that mercury levels are gradually higher in the food chain, e.g. in carnivorous fish are usually higher than in lower segments of the food chain like in omnivorous and herbivorous species. Once in the fish's body it binds to fish tissues including fat and muscles and is eliminated very slowly and persists in the body for a very long time [5].

Mercury in the environment is constantly cycled and recycled through a biochemical cycle shown in Figure 1 [6].

Figure 1: Biochemical cycle of mercury [6].

Sampling sites

This chapter provides a general description of studied areas. More detailed information is given in the description of samples and sites in Table 1 and Table 2.

Khao Hin Sorn

Khao Hin Sorn is a part of Chachoengsao Province that lies in the eastern part of Thailand. The total area of the province is 5,351 km² and has a total population of almost 701,000 registered inhabitants. Chachoengsao is further divided into 11 districts which one of them is Phanom Sarakham where Khao Hin Sorn subdistrict is located. Its total population counts 15,600 inhabitants and is the second most populated in the district [7]. In the studied area there are different sources of pollution, e.g. a number of small industrial facilities like an ash disposal site in nearby eucalyptus plantation or an aluminum smelting plant. Based on the data measured in previous study, high levels of arsenic, cadmium, nickel and chromium were found in the sediment collected at the effluent discharge point. Increased levels of arsenic and mercury were found in wetlands used for agricultural purposes which are expected to receive effluent water from the industrial discharge and the eucalyptus plantation respectively.

Khon Kaen

With its 10,886 km² is Khon Kaen the fifth-largest Thai province and is further divided into 26 districts with a total population of nearly 1,798,000 registered inhabitants. Sampling for this study took place in Nam Phong district. The sources of pollution in this area are a coal power plant and paper and pulp industry. One of biggest paper and pulp industrial areas in Thailand is located 30 kilometers north of the city Khon Kaen. The paper and pulp industrial area is surrounded by eleven villages in a radius of five kilometers and holds almost 1,400 households. Aside of factory space there is also waste landfill and eucalyptus forest. The industrial area has two paper and pulp production lines with the total production capacity of 240,000 tons per a year. As a part of the area there are chemical plants, including a chlor-alkali production plant, a chlorine dioxide production plant, a sulfur dioxide production plant, an oxygen production plant and also two power plants and a wastewater treatment plant.

The area is drained by a water stream Chot flowing through the eucalyptus forest and this water stream is a tributary of the Phong River. The river water is used not only for community and municipal water supply, industry, agriculture and aquaculture, but the river itself is also a recipient of waste water from communities and industries and runoff from agriculture [8]. Based on previously measured data increased levels, mainly of arsenic, mercury and cadmium were found in analyzed sediments originating from this area.

Loei

Loei is one of the most sparsely populated provinces of Thailand. It lies in the North East of the country in a fertile basin and is covered with mountains. The Loei River that flows through the province is a tributary of the Mekong which forms part of the northern boundary of the province with neighboring Laos. The province has a total area of almost 11,425 km² with over 638,800 registered inhabitants and is divided into 14 districts. Its economy is driven mostly by agriculture and gold ore mining.

Villagers in the Na Nong Bong community in Loei province live less than one kilometer from the mine and since it was open in 2006 they have filled numerous of complaints against the mine's license in the attempts to mitigate the contamination of their nearby villages. The gold mining company was accused of poisoning villagers' land and water supplies and causing serious health problems. A government study of contamination in this area reported dangerous levels of contaminants in local rivers and creeks. They found cyanide, arsenic and mercury levels that exceeded safety standards in the blood of people living in its surrounding. Moreover, the mining operations have been accused of major environmental damage of that area too [9]. Samples analyzed in this study were taken in the industrial vicinity of this gold mine.

5

Map Ta Phut

Map Ta Phut Is a town located in Rayong Province and it is a site of Thailand's largest industrial area that consists of "Map Ta Phut Industrial Estate", "Pha Daeng Industrial Estate", "Hemaraj Eastern Industrial Estate (Map Ta Phut)", "Asia Industrial Estate" and "R.I.L Industrial Estate" that cover area of almost 16.3 km². Rayong is a province that lies in the East of Thailand on the coast of the Gulf of Thailand. Although the north is hilly, the province consists mostly of low coastal plains. Some islands in the Gulf of Thailand belong to the province, including some popular tourist destinations. It has a total area of 3,552 km² with almost 675,000 inhabitants. The province is divided into 8 districts and the industrial estates lie in Map Ta Phut subdistrict, Mueang Rayong District. The town itself has a total population of over 62,000 people.

The industrial estate is the country's largest industrial estate and the world's 8th largest petrochemical industrial complex. It was founded in 1990 and is managed by the Thai Ministry of Industry. Sampling took place in the area nearby the heavy industry development zone. Previously measured data in sediment samples show increased concentration of most risk elements, mainly arsenic, mercury, zinc, copper, nickel and chromium that were found in downstream sediments comparing to the upstream ones [10].

Rayong IRPC industrial zone

IRPC industrial zone belongs to Rayong province that was described above and is a part of Mueang Rayong district. If pollution occurs then the possible source may be most likely a petrochemical plant, a compounding plastics plant or several refineries that operate in the area.

Praeksa

Praeksa belongs to the Samut Prakan Province that lies at the mouth of the Chao Phraya River on the Gulf of Thailand. The total area of this province is 1,004 km², total population of 1,279,300 registered inhabitants and the province is ranked with 3rd highest population density in the country. Samut Prakan is further divided into 6 districts and Praeksa is a part of Mueang district with population of 56,400 people.

There are over 6,576 factories in the area that produce motor vehicles, car parts and equipment, metal products, electronics, textiles, food products, chemicals, plastics, etc. There is also a dumping site of 0.24 km² and depth of 50 m that accumulate municipal solid waste and illegally also some industrial waste for over 20 years. In 2014 there was a massive

fire that lasted for almost a week, in which about a ton of the dumped waste has uncontrollably burned [11].

Samut Sakhon

Samut Sakhon is located in the central of Thailand and with a total area of 872.3 km² belongs to the one of the smallest provinces. Its total population is nearly 545,400 registered inhabitants and the province is divided into 3 districts. It is a coastal province with a network of more than 170 canals flowing into Tha Chin River and the Gulf of Thailand. Local economy relies on industry, fishing, seafood processing, agriculture and it is a leading province for sea salt production [12]. Industrial activities in the studied area are represented mostly with high concentration of smelting and recycling factories that are located in Mueang Samut Sakhon district.

Tha Tum

Tha Thum is located in Prachinburi Province and covers a total area of 4,762 km² and its population reaches almost 482,200 inhabitants. The Province is geographically divided into two major parts, the low river valley of the Prachin Buri River, and the higher lands with plateaus and mountains of the Sankamphaeng Range. Tha Tum lies in Si Maha Phot district and has almost 17,400 registered inhabitants. Tha Tum is an industrial complex that consists of 304 industrial park and factories in its surrounding. There are many coal power plants and various types of industries in this area, including paper and pulp production, plastic production, car parts production, distillery, etc. [13]. Based on previously measured data, the location of Tha Tum shows increased concentrations of some risk elements like arsenic, cadmium and chromium.

Klong Dan

As mentioned above Samut Prakan Province lies at the mouth of the Chao Phraya River on the Gulf of Thailand. The total area of this province 1,004 km² and a total population of 1,279,300 registered inhabitants and therefore ranked as 3rd highest population density in the country. Samut Prakan is further divided into 6 districts. The part of the province on the west side of the Chao Phraya River consists mostly of rice paddies and shrimp farms as well as mangrove forests, while the eastern part is the urban center, including industrial factories.

Klong Dan belongs to the Bang Bo district and with its almost 30,000 inhabitants is the biggest subdistrict in the area. It is also a site with never completed wastewater treatment plant financed partly by the Asian Development Bank. The 24 billion baht project was not completed due to opposition from local residents and charges of malfeasance levelled against those responsible for the project [14,15]. Samples collected for purposes of this study originated from a small fishing town without any significant source of pollution apart from fishing facilities and accumulation of all kinds of ships and boats.

Chanthaburi

Chanthaburi is a province in the east of Thailand. Its total area is 6,338 km² and a population of 531,000 inhabitants. The province is further divided into 10 districts [16]. While the southern part of Chanthaburi lies on the shore of the Gulf of Thailand and thus mostly consists of coastal alluvial plains the hinterlands in the north of the province are mountainous. Samples for this study were collected in the northwestern part of the province in the Kaeng Hang Maeo District. There is no significant source of pollution in this area and therefore amounts of risk elements in collected samples were expected to be relatively low for this reason.

Thap Lan National Park and Klong Yang Canal

The total area of Prachinburi is 4,762 km², the province is further divided into 7 districts and has a total population of almost 482,200 registered inhabitants. The Prachiburi Province is geographically divided into two major parts, the low river valley of the Prachinburi River and the higher lands with plateaus and mountains of the Sankamphaeng Range. In those areas are also placed two national parks, Khao Yai and Thap Lan National Park. In the south of the province is located 304 industrial park, coal power plants paper and pulp factory, ethanol production factory, sulphuric acid factory, a Rojana industrial park which one of its biggest tenants is Honda Automobile that has established there a 17.2 billion baht plant to manufacture sub-compact vehicles [17].

The areas of interest (Thap Lan National Park and Klong Yang Canal) are parts of Na Di District that lies in the northeastern part of the province and has a total of 51,600 inhabitants. The park consists of rare fan palm forests. It is also a source of many river streams and has many natural attractions such as cliffs and waterfalls. This 2,236 km² area was declared 40th national park of Thailand on 23rd December 1981 and therefore is kept as an industry-free zone [18].

Sampling material

Information about samples and sites that they originate from are given in Table 1 and Table 2.

Table 1: Description of fish samples and sampling sites. Length 1: fish total length (including a tail fin). Length 2: fish length without a tail fin., n: number of collected subjects.

Sample	Date	GPS	Sampled Fish	Sampled	Sampling Spot	Length 1; Length
code			Latin Name	FishCommon	Description	2; Weight; Age
			Number of	Name	(Potential Source	
			Subjects (n)	Feeding	of	
				Habits	Contamination)	
			Chantha	Ĩ		
CHA3		N12°58′12.500′′	Neolissochillus	Pla Puang –	Jungle waterfall	23 cm; 18.5 cm;
	2016 02 16	E101°45′09.670′′	stracheyi	Mahseer		131 g; 1-2 years
	2016-02-16		n=1	Barb		
C11A.4		N12°58′11.730′′	Neolissochillus	Omnivore	Jungle waterfall	36 cm; 29.2 cm;
CHA4		E101°45′07.819′′	stracheyi	Pla Puang – Mahseer	Jungle waterfall	36 cm; 29.2 cm; 558 g; 3 years
	2016-02-16	E101 45 07.819	n=1	Barb		556 g, 5 years
	2010-02-10		11-1	Omnivore		
			Khao Hin			
KUCC	[N12841112 20011			Canaly (Illegal	20 5, 22 2,
KHS6		N13°41′13.200′′	Oxyeleotris marmorata	Pla Boo – Marble Goby	Canal; (Illegal dumping of	28.5; 22.3; 340 g; 4 years
	2016-02-17	E101°35′59.798′′	n=1	Carnivore	hazardous waste;	340 g; 4 years
	2010-02-17		11-1	Carrivore	Metal smelting)	
KHS10		N13°42′52.499′′	Channa striata	Pla Chorn -	Canal; (Illegal	37.5 cm; 31.5 cm
101010		E101°25′40.400′′	n=1	Snakehead	dumping of	431 g; 2 years
	2016-02-18	LI01 25 40.400		Carnivore	hazardous waste;	
					Metal smelting)	
			Khon K	aen		
KK-	2017-02-03		Clarias	Pla Dook –	Canal; (Pulp and	29 cm; 26.5 cm;
2017-2			batrachus	Walking	paper industry;	204 g; 4 months
-		N16°41′49.459′′	n=1	Catfish	Coal power plant)	
		E102°44′07.058′′		Omnivore		
KK-	2017-02-03		Channa striata	Pla Chorn -	Canal; (Pulp and	40 cm; 34 cm;
2017-5		N16°43′23.398′′	n=1	Snakehead	paper industry;	598 g; 0-1 year
		E102°44′52.444′′		Omnivore	Coal power plant)	
KK-	2017-02-03		Clarias	Pla Dook –	Reservoir; (Pulp	32 cm; 28 cm;
2017-6			batrachus	Walking	and paper	245 cm; 0-1 year
		N16°43′18.631″	n=1	Catfish	industry;	
ļ		E102°45′04.939′′		Omnivore	Coal power plant)	
KK12/1	2016-02-20	N1C942'4C C4C'	Barbonymus	Pla Thapian	Canal; (Pulp and	19.2cm; 16.2 cm;
		N16°43′16.619′′	gonionotus	– Silver Barb	paper and pulp	142 g; -
		E102°45′04.370′′	n=1	Omnivore	industry;	
					Coal power plant)	

Sample code	Date	GPS	Sampled Fish Latin Name	Sampled FishCommon	Sampling Spot Description	Length 1; Length 2; Weight; Age					
			Number of	Name	(Potential Source of						
			Subjects (n)	Feeding Habits	or Contamination)						
Khon Kaen											
	2016 02 21		-		Decembring (Dulla	20 F /21 am					
KK14-1	2016-02-21		Hampala macrolepidota	Pla Kasoop Kit –	Reservoir; (Pulp and paper	20.5/21 cm; 17.1/17;					
		N16°43′16.612′′	n=2	Hampala	industry;	17.1/17, 121/127 g; 1 year					
		E102°45′04.360′′	11-2	Barb	Coal power plant)	121/12/g, 1 year					
		2102 43 04.500		Omnivore							
KK14-2	2016-02-21		Channa	Pla Chado –	Reservoir; (Pulp	16.8 cm; 14.9 cm;					
		N16°43′16.612′′	micropeltes	Giant	and paper	49 g; 1 year					
		E102°45′04.360′′	n=1	snakehead	industry;						
				Carnivore	Coal power plant)						
			Klong I	Dan							
KLO1-2	2016-02-13	N13°28′19.200′′	Bivalvia	Mussels	Sea	-					
		E100°48′51.001′′	n=1	-							
KLO1-	2016-02-13	N13°28′44.681′′	Polynemidae	Gulao –	River mouth	46/47/48.8 cm;					
3/1-3		E100°48′09.760′′	n=3	Threadfins		39/39/40.5 cm;					
				Carnivore		973/1087/1176					
						g; -					
KLO1-	2016-02-13	N13°28′44.681′′	Mugillidae	Pla Krabok –	River mouth	24.5/24.6/24.5					
3/4-6		E100°48′09.760′′	n=3	Mullet		cm;					
				Omnivore		20.5/20.8/19.9					
						cm; 174/170/165 g; -					
			Loe	i		174/170/105 g, -					
LOE14	2016-02-20	N17°21′07.769′′	Barbonymus	Pla Thapian	Lek creek; (Gold	29/30 cm; 22/23					
10114	2010-02-20	E101°39′26.219′′	gonionotus	– Silver Barb	mining)	cm;					
		2101 39 20.219	n=2	Omnivore		370/380 g; -					
LOE15	2016-02-20	N17°21′07.769′′	Channa striata	Pla Chorn -	Lek creek; (Gold	25.5/36/18/19					
		E101°39′26.219′′	n=4	Snakehead	mining)	cm;					
				Omnivore		21/29/15/15.5					
						cm;					
						170/800/100/105					
						g; -					
LOE19	2016-02-20	N17°26′09.899′′	Oxyeleotris	Pla Boo –	Huai river	37/- cm; 31/- cm;					
		E101°37′48.601′′	marmorata	Marble Goby	upstream;	700/- g,; 2-3/0-1					
LOE29	2016-02-21	N17°22′52.500′′	n=2 Channa striata	Carnivore Pla Chorn –	(Gold mining) (Gold mining)	year 20.5 cm; 17.5 cm;					
LUEZY	2010-02-21		n=1	Snakehead		92 g; 0-1 year					
		E101°37′27.100′′	+	Omnivore		52 6, 0 1 year					
	I	1	Мар Та		1	<u> </u>					
MTP-		N12°39′02.171′′	Lutjanus johnii	Pla Kapong –	Sea coast;	41/34 cm; 34/29					
2017-1		E101°10′39.979′′	n=2	Snapper	(Coal power plant,	cm;					
	2017-02-05			Carnivore	Chemical	857/654 g; 1/1					
					industry)	year					
MTP-		N12°39′02.171′′	Dasyatis	Pla Kraben –	Sea coast;	51 cm; 175 cm;					
2017-2		E101°10′39.979′′	pastinaca	Stingray	(Coal power plant,	4065 g; 1 year					
	2017-02-05		n=1	Carnivore	Chemical						
					industry)						

Sample code	Date	GPS	Sampled Fish Latin Name Number of Subjects (n)	Sampled FishCommon Name Feeding	Sampling Spot Description (Potential Source of	Length 1; Length 2; Weight; Age
			Мар Та	Habits Phut	Contamination)	
MTP-		N12°38′23.032′′	-	Pla E-klud –	See eest:	43 cm; 38 cm;
2017-3	2017-02-05	E101°09′24.001′′	Acanthopagrus berda n=1	Goldsilk Seabream Carnivore	Sea coast; (Coal power plant, Chemical industry)	1315 g; 1 year
MTP- 2017-5	2017-02-05	N12°38′08.452′′ E101°07′23.761′′	Pomadasys kaakan n=1	Pla Kapong Samea – Javelin Grunter Carnivore	Sea coast; (Coal power plant, Chemical industry)	43 cm; 38 cm; 1140 g; 1 year
MTP- 2017-8	2017-02-05	N12°40′30.500′′ E101°10′29.500′′	Channa striata n=1	Pla Chorn – Snakehead Omnivore	Sea coast; (Coal power plant, Chemical industry)	35 cm; 29 cm; 465 g; 0-1 year
MTP1- 4	2016-02-14	N12°40′10.981′′ E101°10′46.700′′	Bivalve n=1	Mussels -	Sea coast; (Chlor- alki plant; Chemical plant; Coal Power plant)	-
MTP1- 10/1	2016-02-14	N12°40′09.548′′ E101°09′29.070′′	Belonidae n=1	Tek Lang – Needle Fish Carnivore	Sea coast; (Chlor- alki plant; Chemical plant; Coal Power plant)	94.5 cm; 86.5 cm; 1349 g; -
MTP1- 10/2	2016-02-14	N12°40′09.548′′ E101°09′29.070′′	Belonidae n=1	Tek Lang – Needle Fish Carnivore	Sea coast; (Chlor- alki plant; Chemical plant; Coal Power plant)	38.5 cm; 33 cm; 733 g; -
MTP2- 1/1	2016-02-14	N12°45′32.011′′ E101°09′46.598′′	Channa striata n=1	Pla Chorn – Snakehead Omnivore	Canal Kvai Prow; (Chlor-alki plant; Chemical plant; Coal Power plant; Open burning of waste)	30 cm; 24.5 cm; 265 g; 1 year
MTP2- 1/2	2016-02-14	N12°45′32.011′′ E101°09′46.598′′	Trichogaster pectoralis n=1	Pla Salid – Snakeskin Gourami Omnivore	Canal Kvai Prow; (Chlor-alki plant; Chemical plant; Coal Power plant;)	18.5 cm; 15.5 cm; 124 g; 1 year
MTP2- 8	2016-02-14	N12°40′58.760′′ E101°09′17.791′′	Clarias batrachus n=3	Pla Dook – Walking Catfish Omnivore	(Chlor-alki plant; Chemical plant; Coal Power plant)	31/27.5/32.8 cm; 29/25/29.5 cm; 249/192/232 g; -
MTP2- 9	2016-02-14	N12°40′58.760′′ E101°09′17.791′′	Clarias batrachus n=3	Pla Dook – Walking Catfish Omnivore	Chak Mark canal; (Chlor-alki plant; Chemical plant; Coal Power plant)	34.7/32.5/36 cm; 31.5/29.5/31.5 cm; 257/247/423 g; -

Sample code	Date	GPS	Sampled Fish Latin Name Number of	Sampled FishCommon Name	Sampling Spot Description (Potential Source	Length 1; Length 2; Weight; Age					
			Subjects (n)	Feeding Habits	of Contamination)						
	Rayong – IRPC industrial zone										
	2016-02-16	N12°39′22.601′′	Bivalve	Mussels	Dort						
	2010-02-10	E101°16′54.098′′	n=1	-	Port; (Petrochemical	-					
		101 10 54.098			plant;						
IRPC7					Compounding						
					plastics plant;						
					Refineries)						
			Praek								
	2016-02-13	N13°33′38.351″	Channa striata	Pla Chorn –	Canal; (Municipal	43/39.5 cm;					
PR3		E100°38′34.660′′	n=2	Snakehead Omnivore	waste landfill; Hazardous waste	37.4/33.5 cm; 795/616 g; -					
				Onnivore	landfill)	/95/010 g, -					
	2016-02-13	N13°33′24.451′′	Anabas	Pla Mooh –	Fish pond;	19/17 cm;					
		E100°38′25.649′′	testudineus	Climbing	(Municipal	16.6/13.8 cm;					
PR7			n=2	Perch	landfill;	142/110 g;					
				Omnivore	Hazardous waste	1-2/1-2 years					
landfill)											
			Prachin	1							
PRN-	2017-02-08	N14°12′19.400′′	Channa striata	Pla Chorn –	Water reservoir,	44 cm; 38 cm;					
2017-1		E101°55′15.200′′	n=1	Snakehead Omnivore	Thap Lan National Park	586 g; 0-1 year					
	2017 02 00				-	22/22 20/40					
PRN- 2017-2	2017-02-08	N14°14′29.900′′	Oxyeleotris marmorata	Pla Boo – Marble Goby	Klong Yang Canal	23/22 cm; 20/18 cm;					
2017-2		E101°53′02.800′′	n=2	Carnivore		156/127 g;					
		2101 33 02.000	2	cumrore		0-1/0-1 year					
PRN-	2017-02-08	N14°12′19.400′′	Oreochromis	Pla Nil – Nile	Water reservoir,	41/37 cm; 34/29					
2017-		E101°55′15.200′′	niloticus	Tilapia	Thap Lan National	cm; 1349/1238 g;					
3A+3B		2101 55 15.200	n=2	Omnivore	Park	1/1 year					
		· · · · · · · · · · · · · · · · · · ·	Samut Sa								
SMS1-	2016-02-11	N13°29′44.664′′	Polynemidae	Gulao –	Fish and Cockle	33.8/31					
12/1		E100°21′21.456′′	n=2	Threadfins	farming ponds	cm;28.7/26 cm;					
SMS1-	2016-02-11	N13°29′44.664′′	Ambassidae	Carnivore Kaomao –	Fish and Cockle	307/285 cm; - 16/17 cm;					
12/2	2010-02-11	E100°21′21.456′′	n=2	Asiatic	farming ponds	13.8/14					
., –		2100 21 21.430	_	Glassfish	6 F 5	cm;88/117 g; -					
				Carnivore							
SMS1-	2016-02-11	N13°29′44.664′′	Sillago sihama	Pla Sai –	Fish and Cockle	18 cm; 16 cm;					
12/3		E100°21′21.456′′	n=1	Silver Sillago	farming ponds	53 g; -					
				Carnivore							
SMS1-	2016-02-11	N13°29′44.664′′	Mugillidae	Pla Krabok –	Tha Chin river;	24/25/23.5 cm;					
2		E100°21′21.456′′	n=3	Mullet	(Metal smelting;	20/21.5/20.5 cm;					
				Omnivore	Small industrial	180/190/160 g;					
					facilities;	1/1/1 year					
					Open burning of waste)						
	l		l	I	wastej						

Sample	Date	GPS	Sampled Fish	Sampled	Sampling Spot	Length 1; Length				
code			Latin Name	FishCommon	Description	2; Weight; Age				
			Number of	Name	(Potential Source					
			Subjects (n)	Feeding	of					
				Habits	Contamination)					
Samut Sakhon										
SMS1F	2016-03-02	N13°36′38.660′′	Channa striata	Pla Chorn -	Ekkachai canal;	33 cm; 28 cm;				
		E100°20′37.399′′	n=1	Snakehead	(Metal smelting;	274 g; -				
				Omnivore	Small industrial					
					facilities;					
					Open burning of					
					waste)					
SMS2F	2016-03-02	N13°36′38.660′′	Channa striata	Pla Chorn -	Ekkachai canal;	28 cm; 24 cm;				
		E100°20′37.399′′	n=1	Snakehead	(Metal smelting;	178 g; -				
				Omnivore	Small industrial					
					facilities;					
					Open burning of					
			Tha Tu		waste)					
	2017 02 04			r	Chalananaa	F 4 and A 4 and				
TT-	2017-02-04	N13°57′36.850′′ E101°36′06.991′′	Channa striata n=1	Pla Chorn - Snakehead	Chalongweang Canal; (Pulp and	51 cm; 44 cm;				
2017-1		EIUI 30 00.991	11-1	Omnivore	paper industry;	1166 g; 2 years				
				Ommore	Thermal power					
					plant)					
TT1-1F	2016-02-21	N13°56′13.880′′	Channa striata	Pla Chorn -	Industrial park	37 cm; 32 cm;				
		E101°35′36.841′′	n=1	Snakehead	wastewater pond;	448 g; -				
				Omnivore	(Chemical plant;	0,				
					Pulp and paper					
					industry;					
					Coal power plant)					
TT2-6	2016-02-18	N13°55′17.569′′	Oreochromis	Pla Nil – Nile	Discharge water;	17.5/17/20 cm;				
		E101°35′10.118''	niloticus	Tilapia	(Chemical plant;	13.5/13.8/16.2				
			n=3	Omnivore	Paper and pulp	cm;				
					industry;	114/101/151 g;				
					Coal power plant)	0-1/0-1/0-1 years				
TT2-7	2016-02-16	N13°55′17.569′′	Bivalve	Shellfish	Discharge water;	-				
		E101°35′10.118′′	n=1	-	(Chemical plant;					
					Pulp and paper					
					industry;					
TT2-8	2016 02 17	N12°57'50 000''	Channa strists	Pla Chorn -	Coal power plant)	29 cm; 25.5 cm;				
112-8	2016-02-17	N13°57′50.980′′ E101°36′03.229′′	Channa striata n=1	Snakehead	Chalongweang Canal; (Chemical	29 cm; 25.5 cm; 211 g; 0-1 year				
		101 30 03.229	11-1	Omnivore	plant; Pulpp and	zii g, u-i yeal				
				Cinnole	paper industry;					
					Coal power plant)					
		1	1							

Table 2: Description of sampling sites and their relevancy to fish samples.

Sample code	Date	GPS	Sampling Spot Description	Sampling Material	Description of the Sampling	Relevancy to Fish Samples
			Chanthab	uri		
CHA1	2016-02-16	N12°58′11.730′′ E101°45′09.670′′	Upstream creek in the middle of jungle; Rocky creek with wood and plants around	Sandy sediment with decomposed organic matter; Gray color; no odor	Core sampling device; Depth of sample extraction 3 cm	CHA3; CHA4
			Khao Hin S	orn		
KHS7	2016-02-17	N13°41′13.200′′ E101°35′59.798′′	Illegal dumping of hazardous waste; Metal smelting; Downstream of the creek where wastewaters are released	Black mud; No odor	Core sampling device, 3 spots, Sampling depth 20 cm; 0.5 m water layer	KHS6
KHS1	2016-02-17	N13°41'19.91" E101°27'4.11"	Illegal dumping of hazardous waste; Metal smelting; Downstream of the creek where wastewaters are released	Light brown; No odor	Core sampling device, 3 spots, Sampling depth 10 cm; 0.3 m water layer	KHS10
			Khon Kae	en		
KK4	2017-02-03	N16°42′06.041′′ E102°44′18.611′′	Paper and pulp industry; Coal power plant; Taken from outflow (30 m) of wasted water reservoir; Water red colored probably caused by soil particles	Soilysand; Top layer – red- brown; Underneath gray; Odor anaerobic	Depth of sample extraction 10 cm; Stored in plastic 500 ml bottle	КК-2017-2
ККЭ	2017-02-03	N16°43′23.329΄′ E102°44′52.699΄′	Pond; Paper and pulp industry; Coal power plant	Black mud with brown top layer; Contains a lot of small stones; Odor slightly anaerobic	Stainless metal shovel, sampling depth 10 cm, pool from 3; Homgenisation; Stones removing (gravel); Stored in 250 ml plastic bottle	КК-2017-5; КК-2017-6; КК12; КК14-1; КК14-2

Sample	Date	GPS	Sampling Spot	Sampling	Description of	Relevancy to				
code			Description	Material	the Sampling	Fish Samples				
Klong Dan										
KLO1-4	2016-02-13	N13°28′44.681′′	Sediment from a	Dark gray,	Mixed from 5	KLO1-3/1-3;				
-		E100°48′09.760′′	dam	odorless	point samples by	KLO1-3/4-6				
				sediment	shovel from a					
					square of 5 m^2 ,					
					water layer of 1					
					m; Sampling					
					depth 10 cm					
			Loei							
LOE12	2016-02-20	N17°20′57.001′′	Wetland on the	Soilysand;	Taken with a	LOE14; LOE15				
		E101°39′34.301′′	side of soya	Brown-gray;	metal shovel, 5					
			field; Gold	Water pH 5.05	samples; Water					
			mining		layer 20 cm					
LOE27	2016-02-20	N17°22′52.500′′	Upstream Puk	Muddy clay;	Core sampling	LOE19; LOE29				
		E101°37′27.100′′	creek lake; 0.5 m	Black-brown-	device, 5					
			far away from bank with	gray color	samples, 1 m distance;					
			vegetation; Gold		Sampling depth					
			mining		10 cm					
			Map Ta Pl	nut	10 0111					
MTP1-	2017-02-05	N12°40′12.421′′	Sea; 120-150 m	Black mud;	Core sampling	MTP-2017-1;				
14		E101°09′37.710′′	far away from	Anaerobic H ₂ S	device; pool	MTP-2017-2;				
			eastern canal;	odor	sample from 3;	MTP-2017-3;				
			Chlor-alki plant;		Homogenisation	MTP-2017-5				
			Chemical plant;							
			Coke plant;							
			Government							
			survey 300,000 t of this black							
			mud in the bay							
MTP1-	2017-02-05	N12°40′33.442′′	Hvai Yai Canal;	Black sandy	Core sampling	MTP-2017-8				
1	0 00	E101°10′29.550′′	Waters from	sediment with	device, 10 m	0_/ 0				
-		101 10 29.990	petrochemical	clay layer on	line;					
			industry	the surface;	Homogenization;					
				Anaerobic odor	Sampling depth					
					20 cm					
MTP1-	2016-02-14	N12°40′10.981′′	Ta Kuan Canal	Black clay thin	Taken with a	MTP1-4				
6		E101°10′46.700′′		gray layer on	metal shovel,					
				the surface;	pool of 3,					
				Slightly	homogenisation					
	2016 02 14	N12º40'10 040''	Eact from Chal	anaerobic odor	Coro comalian	MTD 10/1-				
MTP1- 8	2016-02-14	N12°40′10.949′′	East from Chak Mak Canal;	Black mud mixed with	Core sampling	MTP-10/1; MTP1-10/2				
0		E101°09′29.182′′	Chlor-alki plant;	sand; Small oil	device, pool of 5, 15 m line;	101171-10/2				
			Chemical plant;	spots;Anaerobic	Sampling depth					
			Coke plant	oily odor	15 cm					

Sample	Date	GPS	Sampling Spot	Sampling Material	Description of	Relevancy to					
code			Description	wateria	the Sampling	Fish Samples					
	Map Ta Phut										
MTP2-	2016-02-14	N12°45′32.101′′	Shallow canal	Brown, very	10 m line of 5	MTP2-1/1;					
2		E101°09′46.598′′	Hval Prow with	wet sediment	points, 1 m far	MTP2-1/2					
			vegetation;		away from the						
			Chlor-alki plant;		bank, 0.5 water						
			Chemical plant;		layer; Sampling						
			Coke plant		depth 20 cm						
MTP2-	2016-02-14	N12°40′30.500′′	Canal near	Gray brown	Core sampling	MTP2-8;					
6		E101°09′27.101′′	factory; Chlor-	clay sediment;	device, 5	MTP2-9					
			alki plant;	Slight anaerobic	samples, 3 m						
			Chemical plant;	odor	distance;						
			Coke plant		Sampling depth						
					10 cm; 0.5 water						
			Poweng IRDC ind	ustrial zono	layer						
	2016 02 16		Rayong – IRPC ind		Taban 11	10007					
IRPC6	2016-02-16	N12°39′22.601′′	Mangroves	Sandy with little	Taken with a	IRPC7					
		E101°16′54.098′′		pieces of black	metal shovel,						
				mud; Anaerobic odor	pool from 5 samples;						
				0001	Sampling depth						
					10 cm;						
					Homogenisation						
			Praeksa	3	Homogenisation						
PR2	2016-02-13	N13°33′38.351′′	Canal around	Surface clay	Taken with a	PR3					
		E100°38′34.660′′	landfill;	layer	metal shovel;						
			Municipal		Mixed from 3						
			landfill;		samples, 5 m						
			Industrial		distance; 0.5 m						
			landfill;		of standing						
			Hazardous		water						
			waste landfill								
PR5	2016-02-13	N13°33′20.279′′	Canal around	Black mud with	Core sampling	PR7					
		E100°38′25.310′′	landfill;	parts of brown	device; 5						
			Municipal	clay; No odor	samples around						
			landfill;		canal's outfall;						
			Industrial landfill;		Sampling depth						
			Hazardous		15-20 cm						
			waste landfill								
			Samut Sak	hon							
SMS1-	2016-02-11	N13°29′44.664′′	Pond close to	Gray clay	Core sampling	SMS1-12/1;					
9		E100°21′21.456′′	farm; Small	e.a, olay	device, 5	SMS1-12/2;					
-		2100 21 21.430	industry		samples,	SMS1-12/3					
			facilities; Open		3 m distance, 2						
			burning of		m from bank;						
			waste; Metal		Sampling depth						
			smelting		20 cm						

Sample	Date	GPS	Sampling Spot	Sampling	Description of	Relevancy to					
code			Description	Material	the Sampling	Fish Samples					
	Samut Sakhon										
SMS1-	2016-02-11	N13°30′45.072′′	Tha Chin river;	Gray sediment	Core sampling	SMS1-2					
3		E100°16′43.536′′	Close to sea; Small industrial facilities; Metal smelting	with a lot of trash; Orange colored water and oil layers near	device, 4 samples. 3 m distance; Sampling depth 20 cm						
SMS2- 11	2016-03-02	N13°36′38.601′′ E100°20′35.581′′	Soi Kong Panam canal; Receives water from factories; Open burning of waste; Metal smelting; Potential fecal pollution	Mud with visible oil pollution on the top; Petrol odor	Core sampling device; Pool sample from 3 samples, 3 m line; 1 m from the bank; 0.5 water layer; Sampling depth 20 cm; Stored in 500 ml plastic bottle	SMS1F; SMS2F					
			Tha Tur	n	bottle						
TT1-9	2017-02-04	N13°57′36.850′′	Water stream in	Dark gray-black	Taken with a	TT-2017-1;					
		E101°36′06.991′′	cattle pasture; Chemical plant; Paper and pulp industry; Coal power plant	clay with brown top layer; Anaerobic odor	metal shovel, pool from 5 samples; Sampling depth 7 cm; Homogenisation	TT2-8					
TT1-7	2016-02-21	N13°56′17.250′′ E101°35′42.389′′	Downstream of Shalong Waeng canal; Chemical plant; Paper and pulp industry; Coal power plant	Dark gray muddy clay; Muddy odor	Core sampling device, pool from 6 samples; 0.5 m from bank; Sampling depth 10 cm	TT-1F					
TT1-5	2016-02-18	N13°55′11.600′′ E101°34′59.992′′	Waste water near wood chip plant; Coal power plant	Black mud	Taken with a metal shovel, pool from 5 samples; Homogenisation	TT2-6, TT2-7					

Sampling procedures and analytical methods

Sediments were usually taken as mixed samples formed by several partial samples taken in various places of the ten given localities (Chanthaburi, Khao Hin Sorn, Khon Kaen, Klong Dan, Loei, Map Ta Phut, Praeksa, Prachinburi, Samut Sakhon, Tha Tum). Samples were taken by means of a shovel into polyethylene containers (V = 500 ml) with screw lids or into polyethylene bags or taken by a core sampling device into polyethylene containers (V = 500 ml). Mixed samples were homogenized in a steel bowl, some of them quartered after homogenization. During soil sampling, the sampling shovel and core sampler were washed with tap or water body water. Samples were stored in a cold and dark environment before analysis. Fish samples were obtained from local fishermen and kept in a freezer wrapped in two polyethylene bags until analyzed.

Analytical procedures for sediments were as follows: after transport to the laboratory, samples were homogenized and a representative part (50 g) was used for the determination of dry matter by a gravimetric method. Another representative part was taken for analysis of heavy metals (cadmium, copper, chromium, lead, zinc and arsenic) by mineralization procedure. The analytical procedure of mineralization was as follows: 5 g of sample was placed into a beaker together with 30 ml of distilled water and 10 ml of concentrated nitric acid. The sample was boiled for a period of 2 hours. Then it was filtered through a fluted filter paper. Metals and arsenic were determined in the mineralizates by atomic absorption and emission spectrometer SensAA. Mercury was measured directly in solid samples by Advanced Mercury Analyser (AMA 254, Altec). Analyses were conducted using standard operating procedures (SOP) established at the University of Chemical Technology, Prague, Czech Republic.

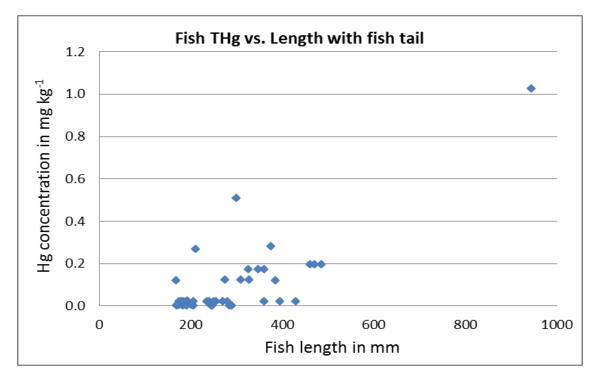
Analysis of mercury and methylmercury in fish were conducted using standard operating procedures (SOP): 70.4 (AAS-AMA and AAS-CZL;S), 70.4.1 (AAS-CZL 2/13;S), respectively. Other risk elements were determined as follows: As using SOP 70.3, AAS-hydrides; other elements using SOP 70.2, AAS-flame and GF-AAS. All procedures were established at the State Veterinary Institute, Prague, Czech Republic.

Results

The results of the analytical measurements of mercury, methylmercury and marginally also other risk elements in collected samples are presented in the following tables (Table 3 – Table 4) and figures (Figure 3 - 8).

Table 3: Content of risk elements in analyzed fish and sediment samples. The content of elements is given in mg kg⁻¹ of dry matter. NA: not analyzed. Contents of Zn, Cd, Sr, Ba, Cu, Co, Ni, Cr, Pb, Mo in fish that were below detection limits are not further mentioned in this table.

		Fish Samples			Area Relevant Sediments			
Sample	Mercury	Methylmercury	Arsenic	Other	Sample	Mercury	Arsenic	Other
code	mg kg ⁻¹	mg kg⁻¹	mg kg ⁻¹	elements	code	mg kg ⁻¹	mg kg⁻¹	elements
CHA3	NA	NA	NA		CHA1	0.02	0.06	1.99 Cd/ 3.98 Cr
CHA4	0.316	0.226	<0.010	0.014 Cd/ 0.07 Cr/ 0.04 Pb				
KHS6	NA	NA	NA		KHS7	0.03	4.08	
KHS10	0.283	0.267	0.010					
KK-2017-2	0.024	0.0177	NA		КК4	<0.01	0.47	
KK-2017-5	0.269	0.202	NA		КК9	0.03	1.12	
KK-2017-6	0.00960.120	<0.0150.105	NA					
KK12	0.0091	<0.015	NA					
KK14-1	0.0356	0.0318	NA					
KK14-2	0.120	0.105	NA					
KLO1-3/1- 3	0.197	0.18	0.240		KLO1-4	0.07	31.87	2.81 Cd/ 72.18 Cr
KLO1-3/4- 6	NA	NA	NA					
KLO1-2	0.06	<0,015	0.98	0.018 Cd/ 0.57 Cr/ 0.22 Pb				


		Fish Samples			Area Relevant Sediments			
Sample	Mercury	Methylmercury	Arsenic	Other	Sample	Mercury	Arsenic	Other
code	mg kg⁻¹	mg kg⁻¹	mg kg⁻¹	elements	code	mg kg⁻¹	mg kg⁻¹	elements
LOE14	0.016	<0.015	NA		LOE12	0.04	3.80	
LOE15	0.020	<0.015	0.080					
LOE19	0.229	0.22	0.010		LOE27	0.05	1.49	
LOE29	NA	NA	NA					
MTP- 2017-1	0.103	0.096	NA		MTP1- 14	0.35	19.86	
MTP- 2017-2	0.143	0.112	NA					
MTP- 2017-3	0.500	0.483	NA					
MTP- 2017-5	0.353	0.334	NA					
MTP- 2017-8	0.168	0.144	NA		MTP1-1	0.03	1.53	
MTP1-4	0.042	0.016	1.510	0.011 Cd/ 0.29 Cr/ 0.20 Pb	MTP1-6	0.13	6.82	13.63 Cd
MTP1- 10/1	1.027	0.988	NA		MTP1-8	0.03	2.30	
MTP1- 10/2	0.119	0.112	NA		-			
MTP2-1/1	0.507	0.487	NA		MTP2-2	0.05	3.03	
MTP2-1/2	NA	NA	NA					
MTP2-8	0.124	0.112	0.020		MTP2-6	0.08	0.30	
MTP2-9	0.173	0.141	0.060					
PR3	0.021	<0.015	0.020		PR2	0.04	39.79	
PR7	NA	NA	NA		PR5	0.04	23.67	

Fish Samples					Area Relevant Sediments			
Sample	Mercury	Methylmercury	Arsenic	Other	Sample	Mercury	Arsenic	Other
code	mg kg⁻¹	mg kg⁻¹	mg kg⁻¹	elements	code	mg kg ⁻¹	mg kg⁻¹	elements
IRPC7	0.028	<0.015	6.720		IRPC6	0.01	2.03	1.92 Cd/
								4.79 Cr
PRN-2017-	0.561	0.499	NA		-	-	-	
1								
PRN-2017-	0.177	0.158	NA					
2								
PRN-2017-	0.129	0.115	NA					
3A+3B								
SMS1-	0.145	0.109	0.470		SMS1-9	0.04	32.39	3.94 Cd/
12/1								54.14 Cd
SMS1-	0.054	0.038	0.740					
12/2								
SMS1-	0.012	<0.015	0.680	0.071 Cd/				
12/3				0.33 Cd/				
				0.11 Pb				
SMS1-2	0.020	<0.015	0.680		SMS1-3	0.04	27.59	
SMS1F	0.009	<0.015	NA		SMS2-	0.15	11.02	
SMS2F	0.017	<0.015	NA		11			
TT 2017 1	0.547	0.455			TT1 0	0.04	25.00	
TT-2017-1	0.517	0.455	NA		TT1-9	0.04	25.90	
TT2-8	NA	NA	NA					
TT1-1F	0.450	0.376	NA		TT1-7	0.04	2.06	
TT2-6	0.006	<0.015	0.030		TT1-5	0.08	0.22	
TT2-7	0.009	<0.015	0.45	0.65 Cr/				
				0.04 Pb				

Table 4: Correlation analysis between total mercury content and other measured parameters. Length 1 – Weight befits polynomic correlation. Methylmercury content befits linear correlation.

Parameter	Correlation coefficient (R)
Length 1 (with tail fin)	0.854
Length 2 (without tail fin)	0.851
Weight	0.671
Methylmercury content	0.998

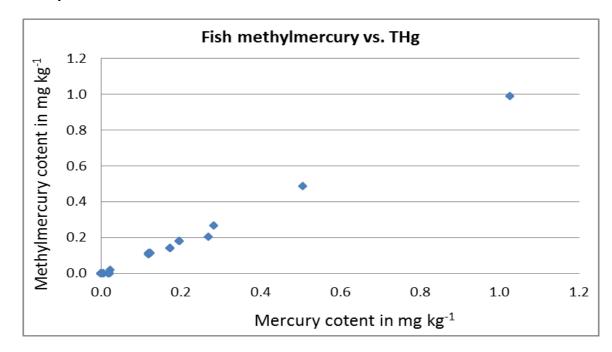


Figure 4: Graph shows the relationship between methylmercury content and total mercury.

Figure 5: An average concentration of total mercury in individual fish species including standard deviation if available.

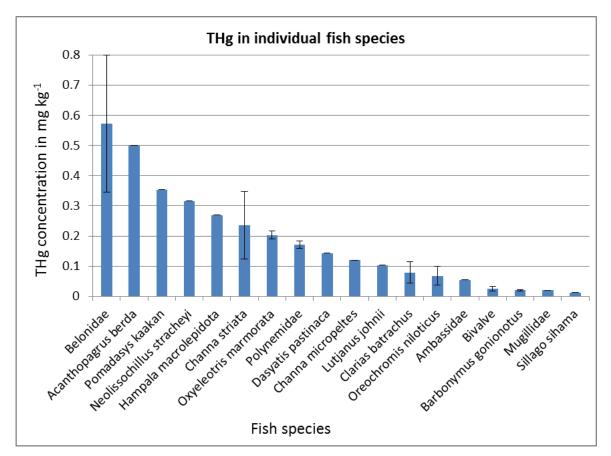


Figure 6:Concentration of total mercury in fish originating from different areas.

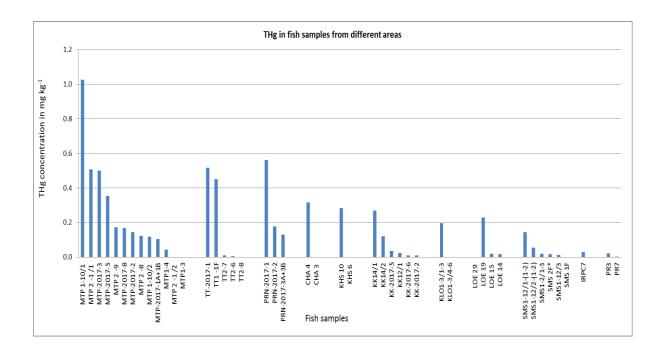


Figure 7: Graph shows a mercury content in fish originating from different sites of Map Ta Phut area.

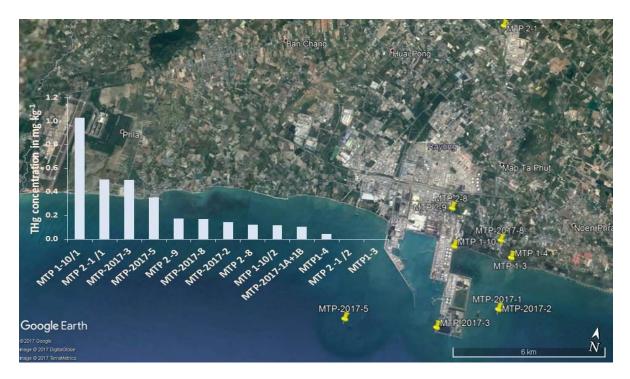
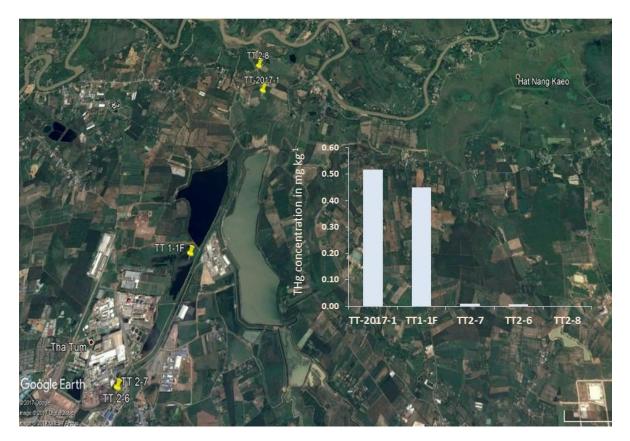



Figure 8: Graph shows a mercury content in fish originating from different sites of Tha Tum area. Sample TT2-8 was not analyzed.

Discussion

Main part of this chapter is an interpretation of data obtained from the conducted survey and their comparison to national and international standards. As well as drawing conclusions of what the results mean for people living around these areas and how it can affect their health. This chapter also tries to outline available options how to reduce risks associated with consumption of fish and fishery products originating from mercury polluted areas.

Legal standards and results of comparable studies

Content of pollutants in collected samples of fish and sediments was compared to the maximum, allowed or recommended levels of these pollutants as defined in national and international decrees, norms and laws (Table 5 – Table 8). Table 9 shows results of other comparable studies that have been conducted in the region of Thailand since 1970's.

Sediment quality guideline for surface water by Thai Pollution Control Department (PCD) [19] gives the maximum recommended levels of risk elements in surface water sediments.

Supplementary guidance for developing soil screening levels by United States Environmental Protection Agency (US EPA) [20] sets regulatory standards of maximum contaminant levels in agricultural soils.

Because sediments may be washed out on surrounding land or for its suitable physico-chemical properties can be used as fertilizers or soil improvers there is Czech Decree No. 257/2009 [21] that regulates sediments application on agricultural soils. It defines the maximum possible content of selected risk elements in sediments that are intended to be used as soil improvers on agricultural soils.

Table 5: Legal standards and recommendations for heavy metals in sediments and soils. The content of elements is given in mg kg⁻¹ of dry matter.

	Mercury	Arsenic
Sediment quality guideline (based on Thai PCD)	0.18	-
Regulatory standards in soils (based on US EPA)	1	0.11
Usage of sediments on agricultural soils (based on CZ Decree)	0.8	30

On the basis of US EPA Regional Screening Levels was created an edited version of Methodological guidelines of the Czech Ministry of Environment on Risk assessment of soil, soil, air and underground water [22] that gives criteria for industrial and other use areas that are not legally binding, however, often applied on a voluntary basis.

Table 6: Auxiliary criteria for soils.	The content of elements	is given in mg kg ⁻¹ of dry
matter.		

Criterion	Mercury	Arsenic
Industrial areas	43	2.4
Other areas	10	0.61

US EPA [23], Commission Regulation (EC) No. 1881/2006 [24], an advisory for consumers by Health Canada [25] and Ministerial Notification No. 98 of B.E. 2529/1986 [26] and its later issue No. 273 of B.E. 2546/2003 [27] limit the maximum levels of mercury in fish and fishery products in the European Union, respectively Thailand.

Foodstuffs	Maximum level of mercury (mg kg ⁻¹ of fresh weight)	Maximum level of arsenic (mg kg ⁻¹ of fresh weight)
Fishery products and muscle meat of fish	0.5	Not set
(excluding species listed below)		
Selected fishery products and muscle meat of fish:	1.0	Not set
Lophius spp., Anarhichas lupus, Sarda sarda,		
Anguilla spp., Hoplostethus spp., Coryphaenoides		
rupestris, Hippoglossus hippoglossus, Genypterus		
capensis, Makaira spp., Lepidorhombus spp.,		
Mullus spp., Genypterus blacodes, Esox ivipa,		
Orcynopsis unicolor, Trisopterus minutus,		
Centroscymnes coelolepis, Raja spp., Sebastes		
marinus, S. mentella, S. iviparous, Istiophorus		
platypterus, Lepidopus caudatus, Aphanopus		
carbo, Pagellus spp., Carcharodon spp.,		
Lepidocybium flavobrunneum, Ruvettus pretiosus,		
Gempylus serpens, Acipenser spp., Xiphias gladius,		
Thunnus, Euthynnus, Katsuwonus pelamis.		
(based on Commission Regulation (EC) No.		
1881/2006)		
Fish and Seafood	0.3 (total per	Not set
(based on US EPA Fact Sheet No. 823-R-01-	week)	
001/2001)	0.2	
	(methylmercury per week)	
	per week)	
Level requiring special fish advisory for consumers	0.2 (total mercury)	-
(based on Health Canada 2007: Human Health		
Risk Assessment)		
Marine fish and Seafood	0.5	2 (inorganic)
(based on Thai Ministerial Notification No. 98 of		
B.E. 2529/1986		
and No. 273 of B.E. 2546/2003)		
Other food (including freshwater fish)	0.02	2 (total)
(based on No. 98 of B.E. 2529/1986and Thai		
Ministerial Notification No. 273 of B.E.		
2546/2003		

Table 7: Maximum allowable levels of mercury and arsenic in fish and seafood.

Table 8: Summary of average intakes from individual fish samples. For calculations was used an average daily intake of fish in Thailand of 0.061 kg and an average body weight of 60 kg [28].

Limit US EPA			RfD 0.3 mg THg	RfD 0.2 mg MeHg kg ⁻¹	0.006 mg MeHg-day*	
Consulta.	T 11.	DA - 11 -	kg⁻¹		D .''	
Sample	THg	MeHg	Weekly THg intake ^A	Weekly MeHg intake ^B	Daily MeHg intake ^c	g of fish to reach daily limit ^D
CHA 4	0.316	0.226	0.135	0.097	0.014	26.5
IRPC7	0.028	<0,015	0.012			
KHS 10	0.283	0.267	0.121	0.114	0.016	22.5
KK12/1	0.024	0.018	0.010	0.008	0.001	339.0
KK14/1	0.269	0.202	0.115	0.086	0.012	29.7
KK14/2	0.120	0.105	0.051	0.045	0.006	57.1
KK-2017-2	0.009	<0,015	0.004			
KK-2017-5	0.036	0.032	0.015	0.014	0.002	188.7
KK-2017-6	0.010	<0,015	0.004			
KLO1-3/1- 3	0.197	0.180	0.084	0.077	0.011	33.3
LOE 14	0.016	<0,015	0.007			
LOE 15	0.020	<0,015	0.009			
LOE 19	0.229	0.220	0.098	0.094	0.013	27.3
MTP 1- 10/1	1.027	0.988	0.439	0.422	0.060	6.1
MTP 1- 10/2	0.119	0.112	0.051	0.048	0.007	53.6
MTP 2 -1 /1	0.507	0.487	0.216	0.208	0.030	12.3
MTP 2 -8	0.124	0.112	0.053	0.048	0.007	53.6
MTP 2 -9	0.173	0.141	0.074	0.060	0.009	42.6
MTP1-4	0.042	0.016	0.018	0.007	0.001	375.0
MTP- 2017- 1A+1B	0.103	0.096	0.044	0.041	0.006	62.5
MTP- 2017-2	0.143	0.112	0.061	0.048	0.007	53.6
MTP- 2017-3	0.500	0.483	0.214	0.206	0.029	12.4
MTP- 2017-5	0.353	0.334	0.151	0.143	0.020	18.0

Limit US EPA			RfD 0.3 mg THg kg ⁻¹	RfD 0.2 mg MeHg kg ⁻¹	0.006 mg MeHg-day*	
Sample	THg	MeHg	Weekly THg intake ^A	Weekly MeHg intake ^B	Daily MeHg intake ^c	g of fish to reach daily limit ^D
MTP- 2017-8	0.168	0.144	0.072	0.061	0.009	41.7
PR3	0.021	<0,015	0.009			
PRN- 2017-1	0.561	0.499	0.240	0.213	0.030	12.0
PRN- 2017-2	0.177	0.158	0.076	0.067	0.010	38.0
PRN- 2017- 3A+3B	0.129	0.115	0.055	0.049	0.007	52.2
SMS 2F*	0.017	<0,015	0.007			
SMS1- 12/1-(1-2)	0.145	0.109	0.062	0.047	0.007	55.0
SMS1- 12/2-(1-2)	0.054	0.038	0.023	0.016	0.002	157.9
SMS1- 12/3	0.012	<0,015	0.005			
SMS1- 2/1-3	0.020	<0,015	0.009			
TT1 -1F	0.450	0.376	0.192	0.161	0.023	16.0
TT-2017-1	0.517	0.455	0.221	0.194	0.028	13.2
TT2-6	0.006	<0,015	0.003			
TT2-7	0.009	<0,015	0.004			lisht nor day times

* limit was calculated as US EPA limit 0.0001 mg MeHg kg-1 body weight per day times average body weight of 60 kg. Values of THg and MeHg intakes and g of fish to reach daily limit were calculated as follows: ^A 7 (days of the week) times an average fish consumption per person times total mercury content in individual fish samples. ^B 7 (days of the week) times an average fish consumption per person times methylmercury content in individual fish samples. ^C An average fish consumption per person times methylmercury content in individual fish samples. ^D US EPA limit related to an average body weight of 0.006 (see * note above) times 1000 (grams in one kilogram) divided by methylmercury content in individual fish samples.

The results of this study are similar to the results obtained from studies previously carried out in the region of Thailand pointing to a long term mercury contamination of this area and its continuance.

Table 9: Overview of mercury content in fish of Thailand.

Study period	Location	Biota	Total mercury (mg kg ⁻¹)	Reference
1974	Bang Pra coast	3 rd trophic level fish 4 th trophic level fish	0.003 – 0.010 0.02 – 0.057	Menasveta (1976)
1976	Chao Phraya estuary	Fish and shellfish	0.009 - 0.205	Menasveta (1978)
1976 - 1977	Inner Gulf	3 rd trophic level fish 4 th trophic level fish	0.002 0.130 0.002 – 0.650	Cheevaparanapiwat and Menasveta (1979)
1977 - 1980	Inner Gulf	Fish and shellfish	0.002 - 0.206	Sivarak and co. (1981)
1979 - 1981	Inner Gulf	Fish and shellfish	0.012 - 0.051	Sidhichaikasem and Chernbamrung (1983)
1980	Mekong Ta Chin Chao Phraya Bang Prakong	Mullets	0.04±0.03 0.07±0.03 0.15±0.06 0.08±0.03	Menasveta and Cheevaparanapiwat (1981)
1990	Sichang Island Map Ta Phut Offshore (Erawan)	Fish	0.012 - 0.032 0.013 - 0.049 0.055 - 0.324	Menasveta (1990)
1997	Outer Gulf of Thailand	Demersal Fish	0.003 – 0.930	ARRI (1998)
2000	Offshore (Erawan)	Fish	0.045 – 0.892	Menasveta and Piyatiratitivorakul (2000)

Study period	Location	Biota	Total mercury (mg kg ⁻¹)	Reference
2008	Offshore (Erawan)	Fish	0.005 – 0.840	Menasveta and Piyatiratitivorakul (2008)
2013	Shalongwaeng Canal	Snakehead Fish	0.067 – 0.526	IPEN (2013)
2016 - 2017	Various sites	Fish	0.006 - 1.027	Results of this study

Evaluation of pollutant levels

The aim of this chapter is to evaluate data obtained from analyzing of fish and sediment samples that originate from different parts of Thailand and determine the degree of environmental and health burden it can cause. Following text is also a summary of results from each studied area and other generalizations resulting from analysis outcomes.

Chanthaburi

The mercury content in samples from Chanthaburi is in the case of CHA3 below Thai legal standards for fresh water fish (0.02 mg kg⁻¹) but in the case of omnivorous Masheer Barb (CHA4) it exceeds this limit almost 16 times. It also exceeds the US EPA limit 0.0001 mg MeHg kg⁻¹ body weight per day by eating just 26.5 g of this Masheer Barb a day. Elevated content of mercury was found in spite of the fact that content of measured risk elements in sediment samples were under legal standard levels in all of them, including mercury and arsenic. Measured arsenic content is fish was bellow Thai legal threshold limit that is set for fresh water fish as 2 mg total arsenic kg⁻¹. Chanthaburi site was chosen as a control site,however, it is obvious that biomagnification of mercury can be a problem even in unpolluted areas. In this case it may be caused by a long transport deposition of mercury likely from Map Tha Put industrial area that is about 70 km far away. Figure 10 (Appendix 2) shows that prevailing winds from October to January blow from Map Tha Put in the direction of Chantaburi which supports the theory of the long range transport of mercury depositions.

Khao Hin Sorn

In the case of Khao Hin Sorn both mercury and methylmercury reached the maximum allowable levels in tissue of analyzed omninivorous Snakehead fish. Arsenic content, on the contrary, was within the Thai legal standard, although arsenic in sediments exceeded the

auxiliary criteria for industrial and other areas given by the Czech Ministry of Environment (2.4 and 0.61 mg arsenic kg¹, respectively). In the vicinity of the sampling sites are placed smelting factories, a dumping of hazardous waste or an outflow of waste water, which all can be the source of the elevated content of arsenic in the environment.

Khon Kaen

Samples of fish (Cat fish, Snakehead fish, Silver Barb, Hampala Barb, Giant Snakehead fish) were taken from an outflow of a near paper and pulp factory and a coal power plant, and therefore the results show elevated levels of mercury in the samples, except samples of Catfish (KK-2017-2, KK-2017-6). Methylmercury reaches the US EPA legal standard for daily methylmercury consumption in samples of carnivorous Giant Snakehead fish and omnivorous Hampala Barb. Consumation of only 29.7 g and 57.1 g of the fish, respectively, would reach the US EPA daily limit of 0.0001 mg MeHg kg⁻¹-day. On the contrary, the content of arsenic in fish tissues were within the legal standards in all analysed samples from Khon Kaen area.

Klong Dan

Analysis of mussel, Threadfin and Mullet samples showed elevated levels of mercury and methylmercury only in the Threadfins (KLO1-3/1-3). Content of methylmercury in this sample exceeded the US EPA daily limit almost 2 times and total mercury content exceeded Thai legal standard for fresh water fish almost 10 times. Content of arsenic reached approximately a half of the legal standard in mussels and about one tenth in the case of Threadfins. , although measured amount of arsenic in sediments was above the maximum allowable arsenic content in sediments according to the Czech decree (30 mg arsenic kg⁻¹ Thai PCD sediment quality guideline, on the other hand, does not set any maximum levels of arsenic in sediments.

Loei

Samples of carnivorous Marble Goby that were caught in the area of Loei gold mine show elevated levels of mercury and methylmercury as well. Only in the case of omnivorous Snakehead fish (LOE29) the mercury content did not reach the Thai legal standard. On the other hand Marble Goby (LOE19) exceeded the US EPA daily limit of methylmercury more than 2 times and consumption of just 27.3 g of this fish would be enough to exceed the daily allowable intake of methylmercury according to the US EPA limit. Arsenic content in fish did not reach the regulatory limits, although sediments from this area exceeds the US EPA regulatory standards for agricultural soils and the Czech auxiliary criteria too.

Map Ta Phut

Heavy industrialized area of Map Ta Phut shows elevated levels of mercury and methylmercury in tissues of collected fish samples (Goldsilk Seabream, Javelin Grunter, Needle fish, Snakehead fish) that belong mostly to the carnivorous type of fish. Amount of mercury in the samples varied between 0.042 - 1.027 mg total mercury kg⁻¹ and 0.016 - 0.998 mg methylmercury kg⁻¹, respectively, and reaches the legal standard in all of them regardless type of their diet. The place of origin and measured concentration of total mercury in the samples shows Figure 7. Daily intake of methylmercury is exceed by all fish species, but not by mussels. Amount of fish or mussels to reach the US EPA daily intake of methylmercury limit varies between 6.1 - 375 g depending on the specie. The most toxic is carnivorous Needle fish and the least toxic are mussels that feed on plankton and other microscopic organisms which are free-floating in the water. Arsenic content in some sediments exceeded the US EPA regulatory standard more than 180 times, although this fact did not reflect on arsenic content in fish samples as arsenic in the samples did not reach the regulatory limits for arsenic in food.

IRPC industrial zone

Although the sample of mussels was taken near an industrial complex, the result of 0.028 mg THg kg⁻¹ exceeded the Thai mercury limit for food only slightly. However, the legal standard for arsenic was in this case exceeded more than 3 times.

Praeksa

Samples from Praeksa come from surrounding of a large municipal and hazardous waste landfill, therefore the collected samples show elevated levels of mercury, but suprisingly slightly (0.021 mg THg kg⁻¹ for PR3). All samples are within range of allowable weekly average intake of mercury and content of methylmercury were below detection limits in all analysed samples, therefore within legal standard of US EPA as well. Arsenic content in fish was below Thai legal standard for food.

Prachinburi

Samples originated from Thap Lan National Park and Klong Yang Canal should have served as a control, industry and pollution free areas with expected low mercury levels, however, the results show otherwise. High contents of mercury and methylmercury, both higher than maximum allowable levels, were found in allsamples (Snakehead fish,Marble Goby, Nile Tilapia)exceeding the Thai legal standards for food 6 – 28 times and US EPA daily methylmercury intake standard 1.16 – 5 times. The highest concentration of both mercury and metylmercury was found in omnivorous Snakehead fish (PRN-2017-1) reaching 0.561 mg kg⁻¹ and 499 mg kg⁻¹, respectively.. Almost 90% of the mercury in the tissue of the Snakehead fish occurs as highly toxic methylmercury, which is consistent with results of US EPA [23]. The source of the pollution remains unknown, although a possible long range transport and atmospheric deposition and accumulation of the mercury from neighboring polluted areas like Prachinburi large Rojana industrial park can be discussed.

Samut Sakhon

The content of measured elements in Samut Sakhon fish samples is generally low, although some of the fish species belongs to carnivores. Threadfin, Asiatic Glassfish and omnivorous Mullet reached the Thai legal standard for total mercury in food. Threadfins also exceeded the US EPA daily intake limit for metylmercury 1.16 times. Arsenic in the fish tissues was present at levels about one fourth to one third of the legal standard, even though in some sediments were found elevated levels of this element.

Tha Tum

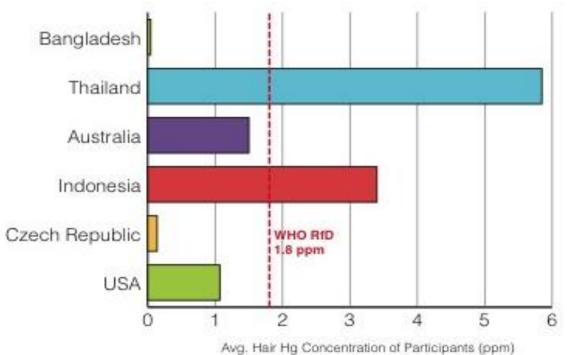

Although Tha Tum area belongs to the ones that are highly industrialized the results of mercury in fish tissues are ambiguous and results are affected by the place of origine (see Figure 8). The content of total mercury varies between 0.006 – 0.517 mg mercury kg⁻¹, i.e. from levels close to the detection limit (Nile Tilapia, Shellfish) to levels exceeding legal standards for fish and seafood given by US EPA, EU and Thai legal standards (Snakehead fish). All analyzed Snakehead fish samples were above regulatory standards for both total mercury and metylmercury as well. Thai legal standard for total mercury was exceeded more than 24 times and US EPA daily mercury intake limit more than 4 times. Sediment samples do not show exceeded levels except slightly elevated levels of arsenic in TT1-7 sample (2.06 mg arsenic kg⁻¹) and significantly elevated levels of arsenic in the sample TT1-9 (25.9 mg arsenic kg⁻¹), although this fact does not reflect on content of arsenic in fish samples.

Figure 5 shows an average concentration of total mercury in individual fish species that reaches $0.573\pm0.454 \text{ mg kg}^{-1}$ for carnivorous Needle fish (*Belonidae*) to $0.0090\pm0.0002 \text{ mg kg}^{-1}$ for Catfish (*Clarias batrachus*). Most often represented fish was a Snakehead fish (n=13) that occurs in 9 of the 11 studied areas and for its frequent occurrence can be considered as one of the most frequently eaten fish. An average content of mercury in the Snakehead fish is $0.235\pm0.222 \text{ mg kg}^{-1}$, median value of 0.168 mg kg^{-1} . 82% of the Snakehead fish samples exceed the Thai legal standard for mercury in food which together with its frequent occurrence may cause serious health effects.

Concentration of the total mercury in fish originating from different studied areas (Figure 6) shows that most toxic fish samples come from highly industrialized Map Ta Phut area and Tha Tum area, but suprisingly also from the area of Thap Lan National Park and Klong Yang Canal. The source of pollution in the case of Map Ta Phut and Tha Tum is obvious but in case of the Thap Lan National Park and Klong Yang Canal remains unknown. A possible long range transport and atmospheric deposition and accumulation of the mercury from polluted areas like Tha Tum industrial area can be discussed. Figure 11 (Appendix 2) shows that prevailing winds in this area from October to February blow from Tha Tum in the direction of Thap Lan National Park which is about 50 km far away, therefore may be the possible source of pollution in the National Park and its surroundings.

High content of mercury in the environment results also in higher concentration of this element in hair. Analysis of mercury in hair of Thais that were conducted by EARTH Association and that will be separately published in the fall 2017 (data given in Appendix 3) show that mercury in human hair samples originating from Tha Tum and Map Ta Phut are generally high. 65% of Map Ta Phut hair samples and 79% of Tha Tum hair samples have mercury content above US EPA standard for safe mercury level in hair that is set as 1 mg kg⁻¹. The content of mercury in hair from Map Ta Phut reaches 0.562 – 35.929 mg kg⁻¹, with mean and median values of 4.339 ± 7.496 mg kg⁻¹, 1.598 mg kg⁻¹. In the case of Tha Tup the content reaches 0.625 - 10.093 mg kg⁻¹, 1.815 ± 1.695 mg kg⁻¹ and 1.367 mg kg⁻¹, respectively. This fact is also supported by a chart below that is using data on mercury concentration in hair previously published by the Arnika Association (Figure 9) that as a limit uses converted WHO and the US EPA guidance values for mercury that are 1.8 mg kg⁻¹ and 1.2 mg kg⁻¹, respectively [29].

Figure 9: Mercury concentration in hair. Complied by Amanda Giang and Julie van der Hoop [29].

The results of this study also confirm bioaccumulation and biomagnification of mercury higher in the food chain, resulting in the generally higher content of mercury in carnivorous fish. Correlation analysis of mercury content with measured parameters (Table 4, Figure 3 – 4) show that fish length (both with and without tail fin) correlates significantly (0.854 and 0.851, respectively) and less correlates weight of the fish (0.671). A strong correlation was found between total mercury content and methylmercury content (0.998) showing that methylation of mercury is one of the main biochemical pathways in studied fish species.

Health risk management

Fish are protein and other nutrient rich foodstuff that is recommended by the US EPA to be eaten 2 - 3 times a week, especially in case of children and women of childbearing age. Although US EPA points out that it is essential to choose cautiously what kind of fish to consume. It is reported by many studies that mercury levels varied between different fish species and areas where they come from. Big carnivorous fish from polluted areas are more likely to have much higher mercury levels comparing herbivorous fish from the same place. In general, King Mackerel, Shark, Tilefish, Marlin, swordfish, Orange Roughy and Big Eye Tuna belong to fish that should be avoided [30].

Mercury high toxicity for human and overall wildlife requests worldwide initiative to reduce the mercury contamination of the environment. The results of this study show that

mercury can contaminate even places with no sources of pollution nearby. In this case the contamination pathway is most probably due to the long distance transport of atmospheric depositions and mercury persistence and accumulation in the environment [31, 32].

Within the EU emissions of mercury are controlled by the Convention on Long-Range Transboundary Air Pollution (CLRTAP). However, it is aimed exclusively on airborne mercury. In order to really eliminate the negative impact of the use and release of mercury worldwide, an international convention has to be applied.

In February 2009 at the 25th meeting of the United Nations Environment Program (UNEP) Steering Committee, representatives from more than 140 countries agreed to a launch of a new Global Mercury Convention. Negotiations began in fall 2009 and in October 2013 the Minamata convention was signed at a diplomatic conference in Japan. Its purpose is to limit mercury inputs to production processes, international mercury trade, mercury emissions, secure storage and address old environmental and mercury waste. Likewise, it should prevent the use of this toxic metal in the production of chlorine, but also in a wide range of medical devices. It should also contribute to the decrease of mercury emissions from coal power plants, waste incinerators and other sources, with using the best available technologies and procedures [33].

Conclusions

The main objective of this study is the evaluation of contamination in different parts of Thailand by mercury and other elements (As, Zn, Cd, Sr, Ba, Cu, Co, Ni, Cr, Pb, Mo). These elements were determined in a set of fish and sediment samples taken during February/March 2016 and February 2017. In collected samples only mercury and arsenic were found at significant levels. Although arsenic in sediments exceeded legal standards quite often, its contain in fish was elevated only in few samples. Also the occurrence of arsenic in water and especially marine organisms is not that crucial because most of the inorganic arsenic from the environment is transformed by the organisms into much less harmful organic compounds like arsenobetaine and arsenocholine that are often considered harmless. On the contrary, a main product of mercury methylation by organisms is highly toxic methylmercury. Another problem is high background concentrations of mercury in samples originating from unpolluted areas which can be caused by a long distance transport of mercury and its bioaccumulation and biomagnification further away from the original source of contamination. When it is counted with Thai average daily fish consumption per person of 0.061 kg and an average body weight of 60 kg then the amount of methylmercury in almost all fish samples were above the US EPA oral Reference Dose for methylmercury, which is set as 0.0001 mg methylmercury per kg body weight-day (see Table 8 *,^C). The most contaminated samples originated from Tha Tum and Map Ta Phut areas. The situation is all the more serious when we take into consideration that such contaminated fish are sometimes eaten up to 2 - 3 times a day, and are eaten even by children, pregnant women

and are intended for the local market. Using of mercury in the industry and subsequent mercury contamination causes health, ecological, economical and ethical burdens and should be further regulated on a national and international level.

Acknowledgement

The field survey, sampling and analysis were conducted as a part of the project "Increasing Transparency in Industrial Pollution Management through Citizen Science".

References

PHOTO 1 on the cover: http://www.mekongcommons.org/wordpress/wpcontent/uploads/2015/08/2_fisherman-e1440581797804.jpg [15.9.2017] PHOTO 2 on the cover: Karnt Thassanaphak [15.9.2017]

- 1. UNEP/WHO: Children's Health and the Environment Mercury, 2008.
- 2. US EPA: IRIS Methylmercury Chemical Assessment Summary [2017-08-16 available on-line at

https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=73]

- 3. L. Trasande and collective: Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries, 2016, Journal of Environmental Management 35, pp.183-229.
- 4. IPEN: Cost of mercury [2017-08-14 available on-line at ipen.org/costofmercury].
- C. Pierce: Mercury [2017-08-14 available on-line at https://people.uwec.edu/piercech/Hg/mercury_water/sources.htm].
- C. Pierce: Mercury [2017-08-14 available on-line at http://www.mercury.utah.gov/atmospheric_transport.htm].
- 7. Department of Provincial Administration, Thailand: Population statistics 2013, 2014.
- A. Reungsang and collective: Distribution of PCDDs/PCDFs in sediments from the Pong River, Khon Kaen, Thailand, Environmental Engineering Research 43, pp.637-643.
- 9. Environmental Justice Atlas: Loei gold mine, Thailand [2017-08-14 available on-line at https://ejatlas.org/conflict/loei-gold-mine-thailand].
- K. Brigden and collective: Investigation of chemicals released by the Vinythai and Thai Plastic & Chemicals (TPC) PVC manufacturing facilities, Map Ta Phut Industrial Estate, Rayong Province, Thailand, Greenpeace Research Laboratories Technical Note, pp. 45.
- 11. EARTH: Praeksa Landfill [2017-08-14 available on-line at http://www.earththailand.org/th/userfiles/Documents/document_%5Bpragsa_mode I_07072014%5D.pdf]
- 12. P. Wattanavanitvut: Salt industry prepares for a shake-up, Bankok Post, September 2016.
- 13. 304 industrial parks [2017-08-14 available on-line at http://www.304industrialpark.com/index.php#HOME].
- Mekong Watch: Samut Prakarn (Klong Dan) Wastewater Management Project in Thailand [2017-08-14 available on-line at http://www.mekongwatch.org/english/country/thailand/Klong%20Dan_Project%20B rief_English%20(2010%2002%2027).pdf], 2010.
- 15. W. Bello: Too hot to handle : the Samut Prakan wastewater management project inspection process / Focus on the Global South, 2002, pp. 46.
- 16. Department of Provincial Administration, Thailand: Population of the Kingdom, 2015.

- 17. M. Piyachart: Prachinburi plant to kick-off, Bankok Post, March 2016.
- 18. Anonymous: National Parks in North-Eastern Thailand [2017-08-14 available on-line at http://www.trekthailand.net/north-east24/].
- 19. PCD: Report on the Study of Sediment Quality Guideline for Surface Water [2017-08-16 available on-line at http://library.pcd.go.th/Multimedia/Ebook/Public/law/Report/law/Report std soil.pdf.
- 20. US EPA: Supplemental guidance for developing soil screening levels for Superfund sites. Office of Solid Waste and Emergency Response, 2002 in: Z. He and collective: Heavy Metal Contamination of Soil: Sources, Indicators, and Assessments, Journal of Environemntal Indicators 9, 2015, pp. 17-18.
- 21. Czech Decree No. 257/2009 on the usage of sediments on agricultural soils, Czech Ministry of Agriculture and Czech Ministry of Environment, 2009.
- 22. Methodological guidelines on Risk assessment of soil, soil, air and underground water, Czech Ministry of Environment, 2013.
- 23. US EPA: Water Quality Criterion for the Protection of Human Health: Methylmercury.
 Final. EPA-823-R-01-001, Office of Science and Technology, Office of Water, U.S.
 Environmental Protection Agency Washington, DC: 303, 2001.
- 24. Commission Regulation (EC) No. 1881/2006 on maximum levels for certain contaminants in foodstuffs, 2006.
- 25. Canada Health: Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption. Ottawa, Canada: Health Canada, 2007.
- 26. Ministerial Notification No. 98 of B.E.2529/1986 on standard of contaminants in food, Thai Ministry of Public Health, 1986.
- 27. Ministerial Notification No. 273 of B.E. 2546/2003 on standard of contaminants in food, Thai Ministry of Public Health, 2003.
- 28. P. Menasveta: Fish survey and sampling in the Gulf of Thailand for total mercury determination. As quoted in the national submission from Thailand (sub53gov) (No further reference details given), 1993.
- 29. L. Stokes and N. Selin: Measuring our mercury exposure through hair samples, MIT, USA, 2013 [2017-08-23 available on-line at http://mercurypolicy.scripts.mit.edu/blog/?p=281]
- 30. US EPA: Eating Fish: What pregnant women and parents should know, 2017 [2017-08-20 available on-line at https://www.fda.gov/Food/FoodbornellInessContaminants/Metals/ucm393070.htm]
- 31. M.R. Risch and collective: Atmospheric mercury deposition to forests in the eastern of USA, 2017, Environmental Pollution 228, pp.8-18.
- 32. R. Liu and collective: Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography, 2017, Physics and Chemistry of the Earth, parts A/B/C. DOI 10.1016/j.pce.2017.04.003.
- 33. Arnika Association: International Conventions on Mercury [2017-08-21 available online on http://arnika.org/mezinarodni-umluvy-o-rtuti]

Appendix 1:

Pictures

Picture 1: Chachoengsao Province

Picture 3: Loei Province

Picture 2: Khon Kaen Province

Picture 4: Prachinburi Province

Picture 5: Rayong Province

Picture 7: Samut Sakhon Province

Picture 6: Samut Prakan Province

Picture 8: Chanthaburi Province

Picture 9: Asiatic Glassfish

Picture 11: Giant Snakehead

Picture 13: Mullet

Picture 10: Climbing Perch

Picture 12: Hampala Barb

Picture 14: Needle Fish

Picture 15: Silver Barb

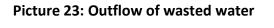
Picture 17: Snakeskin Gourami

Picture 19: Walking Catfish

Picture 16: Snakehead Fish

Picture 18: Threadfins

Picture 20: Sampling of MTP1-1 fish sample



Picture 21: Sampling site for MTP1-10

Picture 22: Sampling site KK4 reservoir at site KK4

a shovel at KK4

Picture 25: Sampling site KK9

Picture 26: Sampling site MTP1-1 with a core sampling device at MTP1-1

Picture 27: Sediment sampling

Picture 28: Sampling site MTP1-14

Picture 29: Sediment sampling with a shovel at MTP1-14

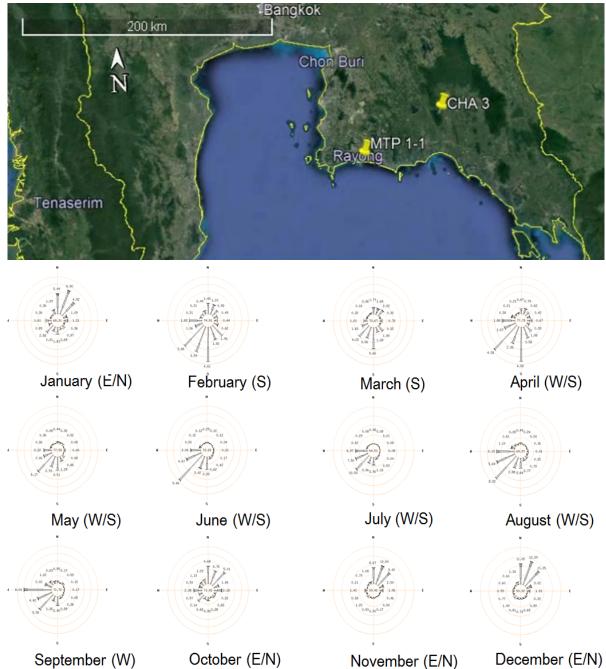
Picture 30: Sampling site SMS2-11

Picture 31: Sampling at SMS2-11

Picture 32: Sampling site TT1-5

Picture 34: Sampling site TT1-9

Picture 33: Sampling site TT1-7



Picture 35: Sampling at sampling site TT1-9

Pictures 1 – 8: Maps by NordNordWest WikiMedia Commons. Pictures 9 – 35: Photos by Arnika Association and EARTH 2016/2017.

Appendix 2:

Figure 10: Comparison of windrose graphs (Rayong, Huay Pong Station) of the area with mutual geographical location of Map Tha Put and Chantaburi.

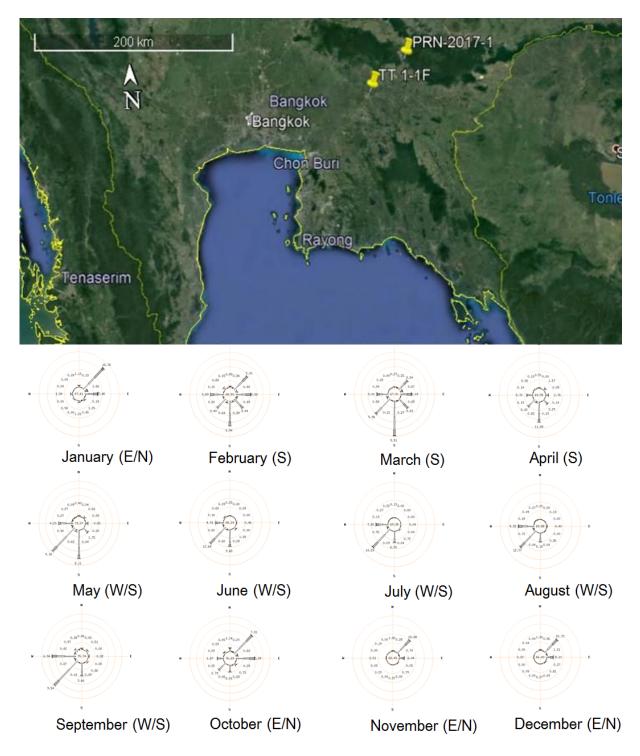


Figure 11: Comparison of windrose graphs (Kabinburi district, Prachinburi province) of the area with mutual geographical location of Tha Tum and Thap Lap National Park.

Appendix 3:

The mercury content in human hair collected from different communities in Thailand. Research was conducted by EARTH Association and will be published separately in September 2017. THA1 samples originating from Map Ta Phut area, THA2 from Tha Tum area.

Sample Code	Community	Mercury	Sample		Mercury
		mg kg ⁻¹	Code	Community	mg kg ⁻¹
THA-1-Hair-01	Krok Yai Cha	1.144	THA-2-		
			Hair-01	Moo 1, Ban Tha Tum	4.472
THA-1-Hair-02	Wat Maptaphut	29.070	THA-2-		
			Hair-02	Moo 1, Ban Tha Tum	1.393
THA-1-Hair-03	Wat Maptaphut	0.696	THA-2-		
			Hair-03	Moo 4, Ban Hua Loh	1.346
THA-1-Hair-04	Wat Maptaphut	0.596	THA-2-		
			Hair-04	Moo 3, Ban Lang Thum	1.026
THA-1-Hair-05	Soi Prapa 2	1.610	THA-2-		
			Hair-05	Moo 3, Ban Lang Thum	2.636
THA-1-Hair-06	Soi Prapa 2	6.196	THA-2-		
			Hair-06	Moo 4, Ban Hua Loh	1.805
THA-1-Hair-07	Soi Prapa 2	0.893	THA-2-		
			Hair-07	Moo 4, Ban Hua Loh	0.725
THA-1-Hair-08	Wat Maptaphut	4.132	THA-2-		
			Hair-08	Moo 3, Ban Lang Thum	0.776
THA-1-Hair-09	Wat Maptaphut	12.512	THA-2-	Moo 4, Ban Tha Bung Kan,	
			Hair-09	Haad Nang Kaew	2.399
THA-1-Hair-10	Wat Maptaphut	0.956	THA-2-	Moo 2, Ban Haad Sung,	
			Hair-10	Haad Nang Kaew	1.328
THA-1-Hair-11	Wat Maptaphut	7.414	THA-2-		
			Hair-11	Moo 6, Ban Wang Ka Pong	1.656
THA-1-Hair-12	Noen Phra	0.687	THA-2-		1
			Hair-12	Moo 6, Ban Haad Ma Kok	1.231
THA-1-Hair-13	Laem Sa Nguan	1.892	THA-2-		1
			Hair-13	Moo 7, Ban Haad Ma Kok	1.855
THA-1-Hair-14	Laem Sa Nguan	1.328	THA-2-		
			Hair-14	Moo 7, Ban Haad Ma Kok	1.085

THA-1-Hair-15	Takuan-Ao-pradoo	1.196	THA-2-		4 000
			Hair-15	Moo 7, Ban Haad Ma Kok	1.082
THA-1-Hair-16	Takuan-Ao-pradoo	2.839	THA-2-		
			Hair-16	Moo 6, Ban Wang Ka Pong	4.564
THA-1-Hair-17	Takuan-Ao-pradoo	1.120	THA-2-		
			Hair-17	Moo 6, Ban Wang Ka Pong	1.076
THA-1-Hair-18	Takuan-Ao-pradoo	4.287	THA-2-		
			Hair-18	Moo 3, Ban Lang Thum	1.412
THA-1-Hair-19	Takuan-Ao-pradoo	0.906	THA-2-		
			Hair-19	Moo 3, Ban Lang Thum	1.387
THA-1-Hair-20	Takuan-Ao-pradoo	1.278	THA-2-		
			Hair-20	Moo 3, Ban Lang Thum	10.093
THA-1-Hair-21	Takuan-Ao-pradoo	1.828	THA-2-		
THA-1-Hall-21	Takuan-Ao-piauoo	1.020	Hair-21	Moo 5, Ban Taam	0.668
					0.000
THA-1-Hair-22	Takuan-Ao-pradoo	35.292	THA-2- Hair-22	Moo 5, Ban Taam	1.579
					1.375
THA-1-Hair-23	Takuan-Ao-pradoo	0.883	THA-2-	Moo 5, Ban Wung Bua	4 700
			Hair-23	Tong	1.723
THA-1-Hair-24	Takuan-Ao-pradoo	1.762	THA-2-	Moo 4, Ban Wung Bua	
			Hair-24	Tong	1.097
THA-1-Hair-25	Nong Tungmay	2.193	THA-2-	Moo 4, Ban Wung Bua	
			Hair-25	Tong	0.836
THA-1-Hair-26	Lao Market	1.892	THA-2-	Moo 4, Ban Wung Bua	
			Hair-26	Tong	1.155
THA-1-Hair-27	Lao Market	1.100	THA-2-	Moo 4, Ban Wung Bua	
			Hair-27	Tong	1.920
THA-1-Hair-28	Lao Market	0.562	THA-2-	Moo 4, Ban Wung Bua	
		0.001	Hair-28	Tong	1.604
THA-1-Hair-29	Lao Market	0.874	THA-2-	Moo 4, Ban Wung Bua	
111A-1-11011-23		0.874	Hair-29	Tong	0.964
THA 4 H 1 20		4.505			
THA-1-Hair-30	Lao Market	1.585	THA-2- Hair-30	Moo 4, Ban Wung Bua Tong	0.643
					0.045
THA-1-Hair-31	Lao Market	1.325	THA-2-	Moo 4, Ban Wung Bua	2 2 2 7
			Hair-31	Tong	2.227
THA-1-Hair-32	Lao Market	9.914	THA-2-	Moo 4, Ban Wung Bua	
			Hair-32	Tong	1.130
THA-1-Hair-33	The mouth of the Takuan Canal	3.550	THA-2-	Moo 4, Ban Wung Bua	
			Hair-33	Tong	2.176
THA-1-Hair-34	Krok Yai Cha	4.007	THA-2-		
			Hair-34	Moo 5, Ban Taam	0.625

Appendix 4

Advisory chart and recommendations of US EPA for fish consumption [30].

Advice About Eating Fish

What Pregnant Women & Parents Should Know

Fish and other protein-rich foods have nutrients that can help your child's growth and development. For women of childbearing age (about 16-49 years old), especially pregnant and breastfeeding women, and for parents and caregivers of young children.

- Eat 2 to 3 servings of fish a week from the "Best Choices" list OR 1 serving from the "Good Choices" list.
- Eat a variety of fish.
 Serve 1 to 2 servings of fish a variety of fish a var
- Serve 1 to 2 servings of fish a week to children, starting at age 2.
 If you eat fish caught by family or
 - If you eat fish caught by family or friends, check for fish advisories. If there is no advisory, eat only one serving and no other fish that week.*

Use this chart!

You can use this chart to help you choose which fish to eat, and how often to eat them, based on their mercury levels. The "Best Choices" have the lowest levels of mercury.

Best Choices EAT 2 TO 3 SERVINGS A WEEK							
Anchovy Atlantic croaker Atlantic mackerel Black sea bass Butterfish Catfish Clam Cod Crab	Herring Lobster, American and spiny Mullet Oyster Pacific chub mackerel Perch, freshwater and ocean Pickerel	Scallop Shad Shrimp Skate Smelt Sole Squid Tilapia Trout, freshwater Tuna, canned light (includes skipjack) Whitefish	Bluefish Buffalofish Carp Chilean sea bass/ Patagonian toothfish Grouper Halibut Mahi mahi/ dolphinfish	Monkfish Rockfish Sheepshead Snapper Spanish mackerel Striped bass (ocean)	Tiləfish (Atlantic Ocean) Tuna, albacore/ white tuna, canned and fresh/frozen Tuna, yellowfin Weakfish/seatrout White croaker/ Pacific croaker		
Crawfish Flounder Haddock	Plaice Pollock Salmon		Choices to Avoid HIGHEST MERCURY LEVELS				
Hake	Sardine	Whiting	King mackerel Marlin Orange roughy	Shark Swordfish	Tilefish (Gulf of Mexico) Tuna, bigeye		
are more likely to have fis	lly and friends, such as larger c sh advisories due to mercury o w often you can safely eat tho	other contaminants. State	www.FDA.gov/fishadvice www.EPA.gov/fishadvice		DA U.S. FOOD & DRUG		

THIS ADVICE REFERS TO FISH AND SHELLFISH COLLECTIVELY AS "FISH." / ADVICE UPDATED JANUARY 2017

The European Union (EU) is made of 28 Member States who have decided to gradually link together their know-how, resources and destinies. Together, during a period of enlargement of 50 years, they have built a zone of stability, democracy and sustainable development whilst maintaining cultural diversity, tolerance and individual freedoms. The European Union is committed to sharing its achievements and its values with countries and peoples beyond its borders. The European Commission is the EU's executive body.

This publication has been produced with the support of the European Union (EU) as a part of the project "Increasing Transparency in Industrial Pollution Management through Citizen Science". The content of this publication does not reflect the official opinion of the European Union. Responsibility for the information and views expressed in the publication lies entirely with the authors.

